IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i3d10.1007_s10898-023-01360-2.html
   My bibliography  Save this article

A new dual-based cutting plane algorithm for nonlinear adjustable robust optimization

Author

Listed:
  • Abbas Khademi

    (University of Tehran)

  • Ahmadreza Marandi

    (Eindhoven University of Technology)

  • Majid Soleimani-damaneh

    (University of Tehran)

Abstract

This paper explores a class of nonlinear Adjustable Robust Optimization (ARO) problems, containing here-and-now and wait-and-see variables, with uncertainty in the objective function and constraints. By applying Fenchel’s duality on the wait-and-see variables, we obtain an equivalent dual reformulation, which is a nonlinear static robust optimization problem. Using the dual formulation, we provide conditions under which the ARO problem is convex on the here-and-now decision. Furthermore, since the dual formulation contains a non-concave maximization on the uncertain parameter, we use perspective relaxation and an alternating method to handle the non-concavity. By employing the perspective relaxation, we obtain an upper bound, which we show is the same as the static relaxation of the considered problem. Moreover, invoking the alternating method, we design a new dual-based cutting plane algorithm that is able to find a reasonable lower bound for the optimal objective value of the considered nonlinear ARO model. In addition to sketching and establishing the theoretical features of the algorithms, including convergence analysis, by numerical experiments we reveal the abilities of our cutting plane algorithm in producing locally robust solutions with an acceptable optimality gap.

Suggested Citation

  • Abbas Khademi & Ahmadreza Marandi & Majid Soleimani-damaneh, 2024. "A new dual-based cutting plane algorithm for nonlinear adjustable robust optimization," Journal of Global Optimization, Springer, vol. 89(3), pages 559-595, July.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:3:d:10.1007_s10898-023-01360-2
    DOI: 10.1007/s10898-023-01360-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01360-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01360-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krzysztof Postek & Dick den Hertog, 2016. "Multistage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty Set," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 553-574, August.
    2. Ayşe N. Arslan & Boris Detienne, 2022. "Decomposition-Based Approaches for a Class of Two-Stage Robust Binary Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 857-871, March.
    3. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    4. Guanglin Xu & Samuel Burer, 2018. "A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides," Computational Optimization and Applications, Springer, vol. 70(1), pages 33-59, May.
    5. Ning Zhang & Chang Fang, 2020. "Saddle point approximation approaches for two-stage robust optimization problems," Journal of Global Optimization, Springer, vol. 78(4), pages 651-670, December.
    6. Norman Zadeh, 1970. "Note--A Note on the Cyclic Coordinate Ascent Method," Management Science, INFORMS, vol. 16(9), pages 642-644, May.
    7. Roos, Kees & Balvert, Marleen & Gorissen, Bram L. & Den Hertog, Dick, 2020. "A universal and structured way to derive dual optimization problem formulations," Other publications TiSEM 05ef7486-5fe1-46ec-8313-9, Tilburg University, School of Economics and Management.
    8. Jon Lee & Daphne Skipper & Emily Speakman, 2022. "Gaining or losing perspective," Journal of Global Optimization, Springer, vol. 82(4), pages 835-862, April.
    9. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    10. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    11. Zhang, X. & Liu, X., 2022. "A two-stage robust model for express service network design with surging demand," European Journal of Operational Research, Elsevier, vol. 299(1), pages 154-167.
    12. Ward Romeijnders & Krzysztof Postek, 2021. "Piecewise Constant Decision Rules via Branch-and-Bound Based Scenario Detection for Integer Adjustable Robust Optimization," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 390-400, January.
    13. Javad Koushki & Kaisa Miettinen & Majid Soleimani-damaneh, 2022. "LR-NIMBUS: an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutions," Journal of Global Optimization, Springer, vol. 83(4), pages 843-863, August.
    14. A. Takeda & S. Taguchi & R. H. Tütüncü, 2008. "Adjustable Robust Optimization Models for a Nonlinear Two-Period System," Journal of Optimization Theory and Applications, Springer, vol. 136(2), pages 275-295, February.
    15. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    16. Odellia Boni & Aharon Ben-Tal, 2008. "Adjustable robust counterpart of conic quadratic problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 211-233, October.
    17. Grani A. Hanasusanto & Daniel Kuhn & Wolfram Wiesemann, 2015. "K -Adaptability in Two-Stage Robust Binary Programming," Operations Research, INFORMS, vol. 63(4), pages 877-891, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    2. Borumand, Ali & Marandi, Ahmadreza & Nookabadi, Ali S. & Atan, Zümbül, 2024. "An oracle-based algorithm for robust planning of production routing problems in closed-loop supply chains of beverage glass bottles," Omega, Elsevier, vol. 122(C).
    3. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    4. Detienne, Boris & Lefebvre, Henri & Malaguti, Enrico & Monaci, Michele, 2024. "Adjustable robust optimization with objective uncertainty," European Journal of Operational Research, Elsevier, vol. 312(1), pages 373-384.
    5. Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
    6. Lee, Junhyeok & Moon, Ilkyeong, 2024. "A decomposition approach for robust omnichannel retail operations considering the third-party platform channel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    7. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    8. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    9. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    10. Jannis Kurtz, 2018. "Robust combinatorial optimization under budgeted–ellipsoidal uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 315-337, December.
    11. Farough Motamed Nasab & Zukui Li, 2023. "Multistage Adaptive Robust Binary Optimization: Uncertainty Set Lifting versus Partitioning through Breakpoints Optimization," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    12. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    13. Cohen, Izack & Postek, Krzysztof & Shtern, Shimrit, 2023. "An adaptive robust optimization model for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 306(1), pages 83-104.
    14. Jiu, Song, 2022. "Robust omnichannel retail operations with the implementation of ship-from-store," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    15. Omar El Housni & Vineet Goyal, 2021. "On the Optimality of Affine Policies for Budgeted Uncertainty Sets," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 674-711, May.
    16. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    17. Wang, Xinfang (Jocelyn) & Paul, Jomon A., 2020. "Robust optimization for hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 221(C).
    18. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    19. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    20. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:3:d:10.1007_s10898-023-01360-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.