IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v87y2023i1d10.1007_s10898-023-01307-7.html
   My bibliography  Save this article

Hesitant adaptive search with estimation and quantile adaptive search for global optimization with noise

Author

Listed:
  • Zelda B. Zabinsky

    (University of Washington)

  • David D. Linz

    (University of Washington)

Abstract

Adaptive random search approaches have been shown to be effective for global optimization problems, where under certain conditions, the expected performance time increases only linearly with dimension. However, previous analyses assume that the objective function can be observed directly. We consider the case where the objective function must be estimated, often using a noisy function, as in simulation. We present a finite-time analysis of algorithm performance that combines estimation with a sampling distribution. We present a framework called Hesitant Adaptive Search with Estimation, and derive an upper bound on function evaluations that is cubic in dimension, under certain conditions. We extend the framework to Quantile Adaptive Search with Estimation, which focuses sampling points from a series of nested quantile level sets. The analyses suggest that computational effort is better expended on sampling improving points than refining estimates of objective function values during the progress of an adaptive search algorithm.

Suggested Citation

  • Zelda B. Zabinsky & David D. Linz, 2023. "Hesitant adaptive search with estimation and quantile adaptive search for global optimization with noise," Journal of Global Optimization, Springer, vol. 87(1), pages 31-55, September.
  • Handle: RePEc:spr:jglopt:v:87:y:2023:i:1:d:10.1007_s10898-023-01307-7
    DOI: 10.1007/s10898-023-01307-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01307-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01307-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y-C Ho & C G Cassandras & C-H Chen & L Dai, 2000. "Ordinal optimisation and simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(4), pages 490-500, April.
    2. G. R. Wood & D. W. Bulger & W. P. Baritompa & D. L. J. Alexander, 2006. "Backtracking Adaptive Search: Distribution of Number of Iterations to Convergence," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 547-562, March.
    3. Zelda Zabinsky & David Bulger & Charoenchai Khompatraporn, 2010. "Stopping and restarting strategy for stochastic sequential search in global optimization," Journal of Global Optimization, Springer, vol. 46(2), pages 273-286, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. S. Chang, 2004. "Technical Note: On Ordinal Comparison of Policies in Markov Reward Processes," Journal of Optimization Theory and Applications, Springer, vol. 122(1), pages 207-217, July.
    2. Liu, Yipeng & Koehler, Gary J., 2010. "Using modifications to Grover's Search algorithm for quantum global optimization," European Journal of Operational Research, Elsevier, vol. 207(2), pages 620-632, December.
    3. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    4. S.Y. Lin & Y.C. Ho, 2002. "Universal Alignment Probability Revisited," Journal of Optimization Theory and Applications, Springer, vol. 113(2), pages 399-407, May.
    5. H. S. Chang, 2005. "On the Probability of Correct Selection by Distributed Voting in Stochastic Optimization," Journal of Optimization Theory and Applications, Springer, vol. 125(1), pages 231-240, April.
    6. Giulia Pedrielli & K. Selcuk Candan & Xilun Chen & Logan Mathesen & Alireza Inanalouganji & Jie Xu & Chun-Hung Chen & Loo Hay Lee, 2019. "Generalized Ordinal Learning Framework (GOLF) for Decision Making with Future Simulated Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-35, December.
    7. Logan Mathesen & Giulia Pedrielli & Szu Hui Ng & Zelda B. Zabinsky, 2021. "Stochastic optimization with adaptive restart: a framework for integrated local and global learning," Journal of Global Optimization, Springer, vol. 79(1), pages 87-110, January.
    8. Shing Chih Tsai & Tse Yang, 2017. "Rapid screening algorithms for stochastically constrained problems," Annals of Operations Research, Springer, vol. 254(1), pages 425-447, July.
    9. A K Miranda & E Del Castillo, 2011. "Robust parameter design optimization of simulation experiments using stochastic perturbation methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 198-205, January.
    10. Hyeong Soo Chang & Jiaqiao Hu, 2012. "On the Probability of Correct Selection in Ordinal Comparison over Dynamic Networks," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 594-604, November.
    11. Morteza Ahandani & Mohammad-Taghi Vakil-Baghmisheh & Mohammad Talebi, 2014. "Hybridizing local search algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 725-748, December.
    12. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    13. Sudip Bhattacharjee & Hong Zhang & R. Ramesh & Dee H. Andrews, 2007. "A Decomposition and Guided Simulation Methodology for Large-Scale System Design: A Study in QoS-Capable Intranets with Fixed and Mobile Components," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 429-442, August.
    14. Shing Chih Tsai, 2013. "Rapid Screening Procedures for Zero-One Optimization via Simulation," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 317-331, May.
    15. Angun, M.E., 2004. "Black box simulation optimization : Generalized response surface methodology," Other publications TiSEM 2548e953-54ce-44e2-8c5b-7, Tilburg University, School of Economics and Management.
    16. Miguel Lejeune & François Margot, 2011. "Optimization for simulation: LAD accelerator," Annals of Operations Research, Springer, vol. 188(1), pages 285-305, August.
    17. Qun Meng & Songhao Wang & Szu Hui Ng, 2022. "Combined Global and Local Search for Optimization with Gaussian Process Models," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 622-637, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:87:y:2023:i:1:d:10.1007_s10898-023-01307-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.