IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v87y2023i1d10.1007_s10898-023-01286-9.html
   My bibliography  Save this article

An effective global algorithm for worst-case linear optimization under polyhedral uncertainty

Author

Listed:
  • Huixian Wu

    (Hangzhou Dianzi University)

  • Hezhi Luo

    (Zhejiang Sci-Tech University)

  • Xianye Zhang

    (Zhejiang Sci-Tech University)

  • Haiqiang Qi

    (Zhejiang Sci-Tech University)

Abstract

In this paper, we investigate effective algorithms for the worst-case linear optimization (WCLO) under polyhedral uncertainty on the right-hand-side of the constraints that arises from a broad range of applications and is known to be strongly NP-hard. We first develop a successive convex optimization (SCO) algorithm for WCLO and show that it converges to a local solution of the transformed problem of WCLO. Second, we develop a global algorithm (called SCOBB) for WCLO that finds a globally optimal solution to the underlying WCLO within a pre-specified $$\epsilon $$ ϵ -tolerance by integrating the SCO method, LO relaxation, branch-and-bound framework and initialization. We establish the global convergence of the SCOBB algorithm and estimate its complexity. Finally, we integrate the SCOBB algorithm for WCLO to develop a global algorithm for the two-stage adaptive robust optimization with a polyhedral uncertainty set. Preliminary numerical results illustrate that the SCOBB algorithm can effectively find a global optimal solution to medium and large-scale WCLO instances.

Suggested Citation

  • Huixian Wu & Hezhi Luo & Xianye Zhang & Haiqiang Qi, 2023. "An effective global algorithm for worst-case linear optimization under polyhedral uncertainty," Journal of Global Optimization, Springer, vol. 87(1), pages 191-219, September.
  • Handle: RePEc:spr:jglopt:v:87:y:2023:i:1:d:10.1007_s10898-023-01286-9
    DOI: 10.1007/s10898-023-01286-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01286-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01286-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaodong Ding & Hezhi Luo & Huixian Wu & Jianzhen Liu, 2021. "An efficient global algorithm for worst-case linear optimization under uncertainties based on nonlinear semidefinite relaxation," Computational Optimization and Applications, Springer, vol. 80(1), pages 89-120, September.
    2. NESTEROV, Yu., 1998. "Semidefinite relaxation and nonconvex quadratic optimization," LIDAM Reprints CORE 1362, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. A. Tsoukalas & A. Mitsos, 2014. "Multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 59(2), pages 633-662, July.
    4. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    5. Agostino Capponi & Peng-Chu Chen & David D. Yao, 2016. "Liability Concentration and Systemic Losses in Financial Networks," Operations Research, INFORMS, vol. 64(5), pages 1121-1134, October.
    6. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    7. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    8. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    9. Hezhi Luo & Xiaodi Bai & Jiming Peng, 2019. "Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 964-992, March.
    10. Samuel Burer & Dieter Vandenbussche, 2009. "Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound," Computational Optimization and Applications, Springer, vol. 43(2), pages 181-195, June.
    11. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    12. Dimitris Bertsimas & Vineet Goyal, 2010. "On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 284-305, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hezhi Luo & Xiaodong Ding & Jiming Peng & Rujun Jiang & Duan Li, 2021. "Complexity Results and Effective Algorithms for Worst-Case Linear Optimization Under Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 180-197, January.
    2. Xiaodong Ding & Hezhi Luo & Huixian Wu & Jianzhen Liu, 2021. "An efficient global algorithm for worst-case linear optimization under uncertainties based on nonlinear semidefinite relaxation," Computational Optimization and Applications, Springer, vol. 80(1), pages 89-120, September.
    3. Dimitris Bertsimas & Frans J. C. T. de Ruiter, 2016. "Duality in Two-Stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 500-511, August.
    4. Dimitris Bertsimas & Ebrahim Nasrabadi & Sebastian Stiller, 2013. "Robust and Adaptive Network Flows," Operations Research, INFORMS, vol. 61(5), pages 1218-1242, October.
    5. Hezhi Luo & Xianye Zhang & Huixian Wu & Weiqiang Xu, 2023. "Effective algorithms for separable nonconvex quadratic programming with one quadratic and box constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 199-240, September.
    6. Agostino Capponi & Xu Sun & David D. Yao, 2020. "A Dynamic Network Model of Interbank Lending—Systemic Risk and Liquidity Provisioning," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1127-1152, August.
    7. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    8. Fanzeres, Bruno & Ahmed, Shabbir & Street, Alexandre, 2019. "Robust strategic bidding in auction-based markets," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1158-1172.
    9. Péter Csóka & P. Jean-Jacques Herings, 2018. "Decentralized Clearing in Financial Networks," Management Science, INFORMS, vol. 64(10), pages 4681-4699, October.
    10. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    11. Tang, Qihe & Tong, Zhiwei & Xun, Li, 2022. "Insurance risk analysis of financial networks vulnerable to a shock," European Journal of Operational Research, Elsevier, vol. 301(2), pages 756-771.
    12. Hamed Amini & Zachary Feinstein, 2020. "Optimal Network Compression," Papers 2008.08733, arXiv.org, revised Jul 2022.
    13. Hezhi Luo & Yuanyuan Chen & Xianye Zhang & Duan Li & Huixian Wu, 2020. "Effective Algorithms for Optimal Portfolio Deleveraging Problem with Cross Impact," Papers 2012.07368, arXiv.org, revised Jan 2021.
    14. Dimitris Bertsimas & Vineet Goyal, 2013. "On the approximability of adjustable robust convex optimization under uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 323-343, June.
    15. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    16. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    17. Yang Wang & Yumeng Zhang & Mengyu Bi & Jianhui Lai & Yanyan Chen, 2022. "A Robust Optimization Method for Location Selection of Parcel Lockers under Uncertain Demands," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    18. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    19. Ketelaars, Martijn, 2024. "Equity Consistency in Financial Networks," Other publications TiSEM 6821532b-151b-4ae3-9543-5, Tilburg University, School of Economics and Management.
    20. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2009. "Robust Optimization for Empty Repositioning Problems," Operations Research, INFORMS, vol. 57(2), pages 468-483, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:87:y:2023:i:1:d:10.1007_s10898-023-01286-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.