IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v85y2023i4d10.1007_s10898-022-01233-0.html
   My bibliography  Save this article

Solving saddle point problems: a landscape of primal-dual algorithm with larger stepsizes

Author

Listed:
  • Fan Jiang

    (Nanjing University of Information Science and Technology)

  • Zhiyuan Zhang

    (Xiamen University)

  • Hongjin He

    (Ningbo University)

Abstract

We consider a class of saddle point problems frequently arising in the areas of image processing and machine learning. In this paper, we propose a simple primal-dual algorithm, which embeds a general proximal term induced with a positive definite matrix into one subproblem. It is remarkable that our algorithm enjoys larger stepsizes than many existing state-of-the-art primal-dual-like algorithms due to our relaxed convergence-guaranteeing condition. Moreover, our algorithm includes the well-known primal-dual hybrid gradient method as its special case, while it is also of possible benefit to deriving partially linearized primal-dual algorithms. Finally, we show that our algorithm is able to deal with multi-block separable saddle point problems. In particular, an application to a multi-block separable minimization problem with linear constraints yields a parallel algorithm. Some computational results sufficiently support the promising improvement brought by our relaxed requirement.

Suggested Citation

  • Fan Jiang & Zhiyuan Zhang & Hongjin He, 2023. "Solving saddle point problems: a landscape of primal-dual algorithm with larger stepsizes," Journal of Global Optimization, Springer, vol. 85(4), pages 821-846, April.
  • Handle: RePEc:spr:jglopt:v:85:y:2023:i:4:d:10.1007_s10898-022-01233-0
    DOI: 10.1007/s10898-022-01233-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01233-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01233-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hongjin He & Jitamitra Desai & Kai Wang, 2016. "A primal–dual prediction–correction algorithm for saddle point optimization," Journal of Global Optimization, Springer, vol. 66(3), pages 573-583, November.
    2. Xingju Cai & Deren Han & Lingling Xu, 2013. "An improved first-order primal-dual algorithm with a new correction step," Journal of Global Optimization, Springer, vol. 57(4), pages 1419-1428, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Yongchao & Peng, Jigen, 2018. "A modified primal-dual method with applications to some sparse recovery problems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 76-94.
    2. Hongjin He & Jitamitra Desai & Kai Wang, 2016. "A primal–dual prediction–correction algorithm for saddle point optimization," Journal of Global Optimization, Springer, vol. 66(3), pages 573-583, November.
    3. Ying Gao & Wenxing Zhang, 2023. "An alternative extrapolation scheme of PDHGM for saddle point problem with nonlinear function," Computational Optimization and Applications, Springer, vol. 85(1), pages 263-291, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:85:y:2023:i:4:d:10.1007_s10898-022-01233-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.