Sparse estimation via lower-order penalty optimization methods in high-dimensional linear regression
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-022-01220-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pun, Chi Seng & Wong, Hoi Ying, 2019. "A linear programming model for selection of sparse high-dimensional multiperiod portfolios," European Journal of Operational Research, Elsevier, vol. 273(2), pages 754-771.
- Giuzio, Margherita & Ferrari, Davide & Paterlini, Sandra, 2016. "Sparse and robust normal and t- portfolios by penalized Lq-likelihood minimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 251-261.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
- Le Thi, H.A. & Pham Dinh, T. & Le, H.M. & Vo, X.T., 2015. "DC approximation approaches for sparse optimization," European Journal of Operational Research, Elsevier, vol. 244(1), pages 26-46.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022.
"Dynamic large financial networks via conditional expected shortfalls,"
European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
- Giovanni Bonaccolto & Massimiliano Caporin & Bertrand Maillet, 2022. "Dynamic Large Financial Networks via Conditional Expected Shortfalls," Post-Print hal-03287947, HAL.
- Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
- Hongchang Hu & Mingqiu Liu & Zhen Zeng, 2025. "Penalized Lq-likelihood estimator and its influence function in generalized linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(1), pages 1-18, January.
- Peili Li & Min Liu & Zhou Yu, 2023. "A global two-stage algorithm for non-convex penalized high-dimensional linear regression problems," Computational Statistics, Springer, vol. 38(2), pages 871-898, June.
- Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
- Miju Ahn, 2020. "Consistency bounds and support recovery of d-stationary solutions of sparse sample average approximations," Journal of Global Optimization, Springer, vol. 78(3), pages 397-422, November.
- Fan Wu & Wei Bian, 2020. "Accelerated iterative hard thresholding algorithm for $$l_0$$l0 regularized regression problem," Journal of Global Optimization, Springer, vol. 76(4), pages 819-840, April.
- Cai, Zhanrui & Li, Changcheng & Wen, Jiawei & Yang, Songshan, 2024. "Asset splitting algorithm for ultrahigh dimensional portfolio selection and its theoretical property," Journal of Econometrics, Elsevier, vol. 239(2).
- Yang, Yuan & McMahan, Christopher S. & Wang, Yu-Bo & Ouyang, Yuyuan, 2024. "Estimation of l0 norm penalized models: A statistical treatment," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
- Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
- Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
- Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
- Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
- Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
- Hang Yu & Yuanjia Wang & Donglin Zeng, 2023. "A general framework of nonparametric feature selection in high‐dimensional data," Biometrics, The International Biometric Society, vol. 79(2), pages 951-963, June.
- Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
More about this item
Keywords
Sparse optimization; Lower-order penalty methods; Restricted eigenvalue condition; Recovery bound;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:85:y:2023:i:2:d:10.1007_s10898-022-01220-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.