Maximum shortest path interdiction problem by upgrading edges on trees under weighted $$l_1$$ l 1 norm
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-020-00958-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huili Zhang & Yinfeng Xu & Xingang Wen, 2015. "Optimal shortest path set problem in undirected graphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 511-530, April.
- Cristina Bazgan & Sonia Toubaline & Daniel Vanderpooten, 2013. "Complexity of determining the most vital elements for the p-median and p-center location problems," Journal of Combinatorial Optimization, Springer, vol. 25(2), pages 191-207, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiao Li & Xiucui Guan & Qiao Zhang & Xinyi Yin & Panos M. Pardalos, 2024. "The sum of root-leaf distance interdiction problem with cardinality constraint by upgrading edges on trees," Journal of Combinatorial Optimization, Springer, vol. 48(5), pages 1-30, December.
- Baldomero-Naranjo, Marta & Kalcsics, Jörg & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2022. "Upgrading edges in the maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 14-36.
- Qiao Zhang & Xiucui Guan & Junhua Jia & Xinqiang Qian & Panos M. Pardalos, 2023. "The restricted inverse optimal value problem on shortest path under $$l_1$$ l 1 norm on trees," Journal of Global Optimization, Springer, vol. 86(1), pages 251-284, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stephen R. Chestnut & Rico Zenklusen, 2017. "Interdicting Structured Combinatorial Optimization Problems with {0, 1}-Objectives," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 144-166, January.
- T. N. Dinh & M. T. Thai & H. T. Nguyen, 2014. "Bound and exact methods for assessing link vulnerability in complex networks," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 3-24, July.
- Nicolas Fröhlich & Stefan Ruzika, 2022. "Interdicting facilities in tree networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 95-118, April.
More about this item
Keywords
Network interdiction problem; Upgrading critical edges; Shortest path; Weighted $$l_1$$ l 1 norm; Primal dual algorithm; Minimum cost cut;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:79:y:2021:i:4:d:10.1007_s10898-020-00958-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.