IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v77y2020i3d10.1007_s10898-020-00885-0.html
   My bibliography  Save this article

Damped Newton’s method on Riemannian manifolds

Author

Listed:
  • Marcio Antônio de A. Bortoloti

    (DCET, Universidade Estadual do Sudoeste da Bahia)

  • Teles A. Fernandes

    (DCET, Universidade Estadual do Sudoeste da Bahia)

  • Orizon P. Ferreira

    (IME, Universidade Federal de Goiás)

  • Jinyun Yuan

    (Dongguan University of Technology)

Abstract

A damped Newton’s method to find a singularity of a vector field in Riemannian setting is presented with global convergence study. It is ensured that the sequence generated by the proposed method reduces to a sequence generated by the Riemannian version of the classical Newton’s method after a finite number of iterations, consequently its convergence rate is superlinear/quadratic. Even at an early stage of development, we can observe from numerical experiments that DNM presented promising results when compared with the well known BFGS and Trust Regions methods. Moreover, damped Newton’s method present better performance than the Newton’s method in number of iteration and computational time.

Suggested Citation

  • Marcio Antônio de A. Bortoloti & Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2020. "Damped Newton’s method on Riemannian manifolds," Journal of Global Optimization, Springer, vol. 77(3), pages 643-660, July.
  • Handle: RePEc:spr:jglopt:v:77:y:2020:i:3:d:10.1007_s10898-020-00885-0
    DOI: 10.1007/s10898-020-00885-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00885-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00885-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2017. "On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 828-843, June.
    2. P.-A. Absil & Luca Amodei & Gilles Meyer, 2014. "Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries," Computational Statistics, Springer, vol. 29(3), pages 569-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabiana R. Oliveira & Fabrícia R. Oliveira, 2021. "A Global Newton Method for the Nonsmooth Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 259-273, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nickolay Trendafilov & Martin Kleinsteuber & Hui Zou, 2014. "Sparse matrices in data analysis," Computational Statistics, Springer, vol. 29(3), pages 403-405, June.
    2. T. Bittencourt & O. P. Ferreira, 2017. "Kantorovich’s theorem on Newton’s method under majorant condition in Riemannian manifolds," Journal of Global Optimization, Springer, vol. 68(2), pages 387-411, June.
    3. Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2017. "On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 828-843, June.
    4. Fabiana R. de Oliveira & Orizon P. Ferreira, 2020. "Newton Method for Finding a Singularity of a Special Class of Locally Lipschitz Continuous Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 522-539, May.
    5. P.-A. Absil & I. Oseledets, 2015. "Low-rank retractions: a survey and new results," Computational Optimization and Applications, Springer, vol. 62(1), pages 5-29, September.
    6. Fabiana R. Oliveira & Fabrícia R. Oliveira, 2021. "A Global Newton Method for the Nonsmooth Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 259-273, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:77:y:2020:i:3:d:10.1007_s10898-020-00885-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.