IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v71y2018i2d10.1007_s10898-018-0608-3.html
   My bibliography  Save this article

Nash game based efficient global optimization for large-scale design problems

Author

Listed:
  • Shengguan Xu

    (Nanjing University of Aeronautics and Astronautics)

  • Hongquan Chen

    (Nanjing University of Aeronautics and Astronautics)

Abstract

A novel Nash-EGO algorithm is presented to extend the usage of efficient global optimization (EGO) into large-scale optimizations by coupling with Nash game strategy. In our Nash-EGO, the large-scale design variables are split into several subsets by adopting Nash variable territory splitting, and the EGO optimizer acts as a player of specific Nash game. All the EGO players are coupled with each other and assigned to optimize their own subsets synchronously in parallel to produce the corresponding approximate optimal subsets. Doing in this way, the performance of EGO players could be expected to keep at a high level due to the fact that EGO players now take care of only their own small-scale subsets instead of facing the large-scale problem directly. A set of typical cases with a small number of variables are firstly selected to validate the performance of each EGO player mentioned. Then, the Nash-EGO proposed is tested by representative functions with a scale up to 30 design variables. Finally, more challenge cases with 90 design variables are constructed and investigated to mimic the real large-scale optimizations. It can be learned from the tests that, with respect to conventional EGO the present algorithm can always find near optimal solutions, which are more close to the theoretical values, and are achieved, moreover, less CPU time-consuming, up to hundreds times faster. All cases with 30 or 90 design variables have similar efficient performances, which indicates the present algorithm has the potential to cope with real large-scale optimizations.

Suggested Citation

  • Shengguan Xu & Hongquan Chen, 2018. "Nash game based efficient global optimization for large-scale design problems," Journal of Global Optimization, Springer, vol. 71(2), pages 361-381, June.
  • Handle: RePEc:spr:jglopt:v:71:y:2018:i:2:d:10.1007_s10898-018-0608-3
    DOI: 10.1007/s10898-018-0608-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0608-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0608-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    2. Cédric Durantin & Julien Marzat & Mathieu Balesdent, 2016. "Analysis of multi-objective Kriging-based methods for constrained global optimization," Computational Optimization and Applications, Springer, vol. 63(3), pages 903-926, April.
    3. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    2. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    3. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    4. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    5. Diariétou Sambakhé & Lauriane Rouan & Jean-Noël Bacro & Eric Gozé, 2019. "Conditional optimization of a noisy function using a kriging metamodel," Journal of Global Optimization, Springer, vol. 73(3), pages 615-636, March.
    6. Yuan, Jun & Shi, Xunpeng & He, Junliang, 2024. "LNG market liberalization and LNG transportation: Evaluation based on fleet size and composition model," Applied Energy, Elsevier, vol. 358(C).
    7. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    8. Donghun Lee, 2022. "Knowledge Gradient: Capturing Value of Information in Iterative Decisions under Uncertainty," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    9. Dellino, G. & Lino, P. & Meloni, C. & Rizzo, A., 2009. "Kriging metamodel management in the design optimization of a CNG injection system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2345-2360.
    10. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    11. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
    12. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
    13. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    14. Kleijnen, Jack & van Nieuwenhuyse, I. & van Beers, W.C.M., 2022. "Constrained Optimization in Simulation : Efficient Global Optimization and Karush-Kuhn-Tucker Conditions (revision of 2021-031)," Other publications TiSEM 31a06a3b-dfc4-4431-a141-5, Tilburg University, School of Economics and Management.
    15. Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
    16. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    17. Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
    18. Julien Pelamatti & Loïc Brevault & Mathieu Balesdent & El-Ghazali Talbi & Yannick Guerin, 2019. "Efficient global optimization of constrained mixed variable problems," Journal of Global Optimization, Springer, vol. 73(3), pages 583-613, March.
    19. Zilong Wang & Marianthi Ierapetritou, 2018. "Surrogate-based feasibility analysis for black-box stochastic simulations with heteroscedastic noise," Journal of Global Optimization, Springer, vol. 71(4), pages 957-985, August.
    20. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:71:y:2018:i:2:d:10.1007_s10898-018-0608-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.