IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v56y2013i4p1755-1771.html
   My bibliography  Save this article

An extension of the Basic Constraint Qualification to nonconvex vector optimization problems

Author

Listed:
  • Bienvenido Jiménez
  • Vicente Novo
  • Miguel Sama

Abstract

In this paper a Basic Constraint Qualification is introduced for a nonconvex infinite-dimensional vector optimization problem extending the usual one from convex programming assuming the Hadamard differentiability of the maps. Corresponding KKT conditions are established by considering a decoupling of the constraint cone into half-spaces. This extension leads to generalized KKT conditions which are finer than the usual abstract multiplier rule. A second constraint qualification expressed directly in terms of the data is also introduced, which allows us to compute the contingent cone to the feasible set and, as a consequence, it is proven that this condition is a particular case of the first one. Relationship with other constraint qualifications in infinite-dimensional vector optimization, specially with the Kurcyuscz-Robinson-Zowe constraint qualification, are also given. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Bienvenido Jiménez & Vicente Novo & Miguel Sama, 2013. "An extension of the Basic Constraint Qualification to nonconvex vector optimization problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1755-1771, August.
  • Handle: RePEc:spr:jglopt:v:56:y:2013:i:4:p:1755-1771
    DOI: 10.1007/s10898-012-9938-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9938-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9938-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. César Gutiérrez & Rubén López & Vicente Novo, 2014. "Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 515-547, August.
    2. B. Jadamba & A. Khan & M. Sama, 2017. "Error estimates for integral constraint regularization of state-constrained elliptic control problems," Computational Optimization and Applications, Springer, vol. 67(1), pages 39-71, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:56:y:2013:i:4:p:1755-1771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.