IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v55y2013i4p729-749.html
   My bibliography  Save this article

Optimization methodology assessment for the inlet velocity profile of a hydraulic turbine draft tube: part II—performance evaluation of draft tube model

Author

Listed:
  • Galván Sergio
  • Rubio Carlos
  • Jesús Pacheco
  • Solorio Gildardo
  • Carbajal Georgina

Abstract

Computational Fluids Dynamics (CFD) tools guide engineers and designers to estimate the performance of new designs. However, a CFD analysis can be very time-consuming depending mainly on the grid size and domain complexity. Thus, this paper aims to describe the tools used to evaluate and compare the performance of different 3D draft tube models for reducing the time-effort needed in an optimization procedure. The results presented here, are the second part of an overall research to establish a global optimization methodology to improve the performance of an hydraulic draft tube through the inlet velocity profile. Previously, three steps of optimization methodology to minimize the energy losses were studied: the inlet velocity profile parameterization, the numerical optimization set-up and the objective function validation. In the latter step, a global optimization method called Multi Island Genetic Algorithm (MIGA) was considered, which requires a large number of iterations before producing a reliable result. This step is able to identify an efficient inlet velocity profile to minimize the energy losses through the draft tube model. However, each iteration is expensive in terms of computational time due to the need for 3D Navier–Stokes (NS) computations to evaluate each profile’s fitness. Thus, in this work the methodology attempts to accelerate the optimization process with accurate results. In order to achieve the goal, the grid size of the 3D draft tube model was minimized, resulting in a much lower computational cost. Specifically, the draft tube calculations were performed on a sequence of five different grids each having approximately twice the number of elements compared to the previous. The measurements of the sensitivity of the draft tube performance quantities to the change of the inlet velocity parameters during the process showed that, in spite of the numerical difference between its performance, the results have the same tendency. Consequently, the 3D draft tube numerical model with a minimal grid size, is reliable and left record of its capabilities for being integrated in the optimization process. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Galván Sergio & Rubio Carlos & Jesús Pacheco & Solorio Gildardo & Carbajal Georgina, 2013. "Optimization methodology assessment for the inlet velocity profile of a hydraulic turbine draft tube: part II—performance evaluation of draft tube model," Journal of Global Optimization, Springer, vol. 55(4), pages 729-749, April.
  • Handle: RePEc:spr:jglopt:v:55:y:2013:i:4:p:729-749
    DOI: 10.1007/s10898-012-0011-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-0011-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-0011-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniels, S.J. & Rahat, A.A.M. & Tabor, G.R. & Fieldsend, J.E. & Everson, R.M., 2020. "Shape optimisation of the sharp-heeled Kaplan draft tube: Performance evaluation using Computational Fluid Dynamics," Renewable Energy, Elsevier, vol. 160(C), pages 112-126.
    2. Muhirwa, Alexis & Cai, Wei-Hua & Su, Wen-Tao & Liu, Quanzhong & Binama, Maxime & Li, Biao & Wu, Jian, 2020. "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants," Renewable Energy, Elsevier, vol. 150(C), pages 743-764.
    3. Peng Song & Jinju Sun, 2019. "Cryogenic Cavitation Mitigation in a Liquid Turbine Expander of an Air-Separation Unit through Collaborative Fine-Tuned Optimization of Impeller and Fairing Cone Geometries," Energies, MDPI, vol. 13(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:55:y:2013:i:4:p:729-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.