IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v55y2013i3p611-626.html
   My bibliography  Save this article

Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems

Author

Listed:
  • X. Huang
  • J. Yao

Abstract

In this paper, we first derive several characterizations of the nonemptiness and compactness for the solution set of a convex scalar set-valued optimization problem (with or without cone constraints) in which the decision space is finite-dimensional. The characterizations are expressed in terms of the coercivity of some scalar set-valued maps and the well-posedness of the set-valued optimization problem, respectively. Then we investigate characterizations of the nonemptiness and compactness for the weakly efficient solution set of a convex vector set-valued optimization problem (with or without cone constraints) in which the objective space is a normed space ordered by a nontrivial, closed and convex cone with nonempty interior and the decision space is finite-dimensional. We establish that the nonemptiness and compactness for the weakly efficient solution set of a convex vector set-valued optimization problem (with or without cone constraints) can be exactly characterized as those of a family of linearly scalarized convex set-valued optimization problems and the well-posedness of the original problem. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • X. Huang & J. Yao, 2013. "Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems," Journal of Global Optimization, Springer, vol. 55(3), pages 611-626, March.
  • Handle: RePEc:spr:jglopt:v:55:y:2013:i:3:p:611-626
    DOI: 10.1007/s10898-012-9846-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9846-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9846-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. X. Huang & X. Q. Yang & K. L. Teo, 2004. "Characterizing Nonemptiness and Compactness of the Solution Set of a Convex Vector Optimization Problem with Cone Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 391-407, November.
    2. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    3. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    4. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    5. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    6. A. Auslender & R. Cominetti & M. Haddou, 1997. "Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 43-62, February.
    7. S. Deng, 1998. "Characterizations of the Nonemptiness and Compactness of Solution Sets in Convex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 123-131, January.
    8. F. Flores-Bazán & C. Vera, 2006. "Characterization of the Nonemptiness and Compactness of Solution Sets in Convex and Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 185-207, August.
    9. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    10. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nithirat Sisarat & Rabian Wangkeeree & Tamaki Tanaka, 2020. "Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps," Journal of Global Optimization, Springer, vol. 77(2), pages 273-287, June.
    2. Nithirat Sisarat & Rabian Wangkeeree & Gue Myung Lee, 2020. "On Set Containment Characterizations for Sets Described by Set-Valued Maps with Applications," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 824-841, March.
    3. M. Oveisiha & J. Zafarani, 2014. "On Characterization of Solution Sets of Set-Valued Pseudoinvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 387-398, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Gutiérrez & Rubén López & Vicente Novo, 2014. "Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 515-547, August.
    2. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
    3. Maurizio Chicco & Anna Rossi, 2015. "Existence of Optimal Points Via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 487-501, November.
    4. Jeyakumar, V. & Lee, G.M. & Dinh, N., 2006. "Characterizations of solution sets of convex vector minimization problems," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1380-1395, November.
    5. N. J. Huang & J. Li & S. Y. Wu, 2009. "Optimality Conditions for Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 323-342, August.
    6. Fabián Flores-Bazán & Elvira Hernández, 2013. "Optimality conditions for a unified vector optimization problem with not necessarily preordering relations," Journal of Global Optimization, Springer, vol. 56(2), pages 299-315, June.
    7. F. Flores-Bazán & C. Vera, 2006. "Characterization of the Nonemptiness and Compactness of Solution Sets in Convex and Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 185-207, August.
    8. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    9. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    10. Christophe Loussouarn & Carine Franc & Yann Videau & Julien Mousquès, 2021. "Can General Practitioners Be More Productive? The Impact of Teamwork and Cooperation with Nurses on GP Activities," Health Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 680-698, March.
    11. Tschakert, Petra, 2016. "Shifting Discourses of Vilification and the Taming of Unruly Mining Landscapes in Ghana," World Development, Elsevier, vol. 86(C), pages 123-132.
    12. Isabelle Boutron & Peter John & David J. Torgerson, 2010. "Reporting Methodological Items in Randomized Experiments in Political Science," The ANNALS of the American Academy of Political and Social Science, , vol. 628(1), pages 112-131, March.
    13. Ben Slimane, Faten & Padilla Angulo, Laura, 2019. "Strategic change and corporate governance: Evidence from the stock exchange industry," Journal of Business Research, Elsevier, vol. 103(C), pages 206-218.
    14. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    15. Natalia Nikolaevna Natocheeva* & Yuri Alexandrovich Rovensky & Yuri Yuryevich Rusanov & Tatiana Viktorovna Belyanchikova & Anna Anatolevna Staurskaya, 2018. "Optimizing Variability of Approaches to Regulatory Financing of Higher Education Services," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 221-227:3.
    16. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    17. Andy Hall, 2005. "Capacity development for agricultural biotechnology in developing countries: an innovation systems view of what it is and how to develop it," Journal of International Development, John Wiley & Sons, Ltd., vol. 17(5), pages 611-630.
    18. Athinoula A. Kosti & Simon Colreavy-Donnelly & Fabio Caraffini & Zacharias A. Anastassi, 2020. "Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    19. Bruno Frey, 2005. "Problems with Publishing: Existing State and Solutions," European Journal of Law and Economics, Springer, vol. 19(2), pages 173-190, April.
    20. Lan, Heng-you, 2021. "Approximation-solvability of population biology systems based on p-Laplacian elliptic inequalities with demicontinuous strongly pseudo-contractive operators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:55:y:2013:i:3:p:611-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.