IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v54y2012i2p375-388.html
   My bibliography  Save this article

Duality for optimization problems in Banach algebras

Author

Listed:
  • M. Soleimani-damaneh

Abstract

In this paper we consider Mond–Weir type and Wolfe type duals for a general nonsmooth optimization problem in Banach algebras, and establish some duality results in the presence of a new class of functions, which is a generalization of the class of smooth KT-(p, r)-invex functions. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • M. Soleimani-damaneh, 2012. "Duality for optimization problems in Banach algebras," Journal of Global Optimization, Springer, vol. 54(2), pages 375-388, October.
  • Handle: RePEc:spr:jglopt:v:54:y:2012:i:2:p:375-388
    DOI: 10.1007/s10898-011-9763-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9763-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9763-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soleimani-damaneh, M., 2008. "Infinite (semi-infinite) problems to characterize the optimality of nonlinear optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 49-56, July.
    2. Mishra, S. K., 2000. "Second order symmetric duality in mathematical programming with F-convexity," European Journal of Operational Research, Elsevier, vol. 127(3), pages 507-518, December.
    3. GOEMANS, Michel X., 1998. "Semidefinite programming and combinatorial optimization," LIDAM Reprints CORE 1347, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. K. Mishra & Vinay Singh & Vivek Laha, 2016. "On duality for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 243(1), pages 249-272, August.
    2. Valeriano Oliveira & Geraldo Silva, 2013. "New optimality conditions for nonsmooth control problems," Journal of Global Optimization, Springer, vol. 57(4), pages 1465-1484, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mishra, S. K. & Wang, S. Y., 2005. "Second order symmetric duality for nonlinear multiobjective mixed integer programming," European Journal of Operational Research, Elsevier, vol. 161(3), pages 673-682, March.
    2. Mishra, S.K., 2006. "Mond-Weir type second order symmetric duality in non-differentiable minimax mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 170(2), pages 355-362, April.
    3. M. Soleimani-damaneh, 2012. "Characterizations and applications of generalized invexity and monotonicity in Asplund spaces," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 592-613, October.
    4. Chen, Xiuhong, 2004. "Minimax and symmetric duality for a class of multiobjective variational mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 154(1), pages 71-83, April.
    5. Suneja, S. K. & Aggarwal, Sunila & Davar, Sonia, 2002. "Multiobjective symmetric duality involving cones," European Journal of Operational Research, Elsevier, vol. 141(3), pages 471-479, September.
    6. Mishra, S. K., 2005. "Non-differentiable higher-order symmetric duality in mathematical programming with generalized invexity," European Journal of Operational Research, Elsevier, vol. 167(1), pages 28-34, November.
    7. Mishra, S.K. & Wang, S.Y. & Lai, K.K., 2009. "Symmetric duality for minimax mixed integer programming problems with pseudo-invexity," European Journal of Operational Research, Elsevier, vol. 198(1), pages 37-42, October.
    8. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    9. Gulati, T.R. & Saini, Himani & Gupta, S.K., 2010. "Second-order multiobjective symmetric duality with cone constraints," European Journal of Operational Research, Elsevier, vol. 205(2), pages 247-252, September.
    10. Mishra, S.K. & Wang, S.Y. & Lai, K.K. & Yang, F.M., 2007. "Mixed symmetric duality in non-differentiable multiobjective mathematical programming," European Journal of Operational Research, Elsevier, vol. 181(1), pages 1-9, August.
    11. Soleimani-damaneh, M., 2008. "Infinite (semi-infinite) problems to characterize the optimality of nonlinear optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 49-56, July.
    12. Mishra, S.K. & Lai, K.K., 2007. "Second order symmetric duality in multiobjective programming involving generalized cone-invex functions," European Journal of Operational Research, Elsevier, vol. 178(1), pages 20-26, April.
    13. Mishra, S.K. & Wang, S.Y. & Lai, K.K., 2007. "Pseudolinear fuzzy mappings," European Journal of Operational Research, Elsevier, vol. 182(2), pages 965-970, October.
    14. Alireza Kabgani & Majid Soleimani-damaneh & Moslem Zamani, 2017. "Optimality conditions in optimization problems with convex feasible set using convexificators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 103-121, August.
    15. Agnès Gorge & Abdel Lisser & Riadh Zorgati, 2012. "Stochastic nuclear outages semidefinite relaxations," Computational Management Science, Springer, vol. 9(3), pages 363-379, August.
    16. William Cook & Sanjeeb Dash, 2001. "On the Matrix-Cut Rank of Polyhedra," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 19-30, February.
    17. Yang, X. M. & Yang, X. Q. & Teo, K. L., 2003. "Non-differentiable second order symmetric duality in mathematical programming with F-convexity," European Journal of Operational Research, Elsevier, vol. 144(3), pages 554-559, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:2:p:375-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.