IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v205y2010i2p247-252.html
   My bibliography  Save this article

Second-order multiobjective symmetric duality with cone constraints

Author

Listed:
  • Gulati, T.R.
  • Saini, Himani
  • Gupta, S.K.

Abstract

In this paper, we formulate Wolfe and Mond-Weir type second-order multiobjective symmetric dual problems over arbitrary cones. Weak, strong and converse duality theorems are established under [eta]-bonvexity/[eta]-pseudobonvexity assumptions. This work also removes several omissions in definitions, models and proofs for Wolfe type problems studied in Mishra [9]. Moreover, self-duality theorems for these pairs are obtained assuming the function involved to be skew symmetric.

Suggested Citation

  • Gulati, T.R. & Saini, Himani & Gupta, S.K., 2010. "Second-order multiobjective symmetric duality with cone constraints," European Journal of Operational Research, Elsevier, vol. 205(2), pages 247-252, September.
  • Handle: RePEc:eee:ejores:v:205:y:2010:i:2:p:247-252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00004-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Devi, G., 1998. "Symmetric duality for nonlinear programming problem involving [eta]-bonvex functions," European Journal of Operational Research, Elsevier, vol. 104(3), pages 615-621, February.
    2. Yang, X. M. & Yang, X. Q. & Teo, K. L. & Hou, S. H., 2005. "Multiobjective second-order symmetric duality with F-convexity," European Journal of Operational Research, Elsevier, vol. 165(3), pages 585-591, September.
    3. Yang, X. M. & Yang, X. Q. & Teo, K. L. & Hou, S. H., 2005. "Second order symmetric duality in non-differentiable multiobjective programming with F-convexity," European Journal of Operational Research, Elsevier, vol. 164(2), pages 406-416, July.
    4. Mishra, S. K., 2000. "Multiobjective second order symmetric duality with cone constraints," European Journal of Operational Research, Elsevier, vol. 126(3), pages 675-682, November.
    5. Suneja, S. K. & Lalitha, C. S. & Khurana, Seema, 2003. "Second order symmetric duality in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 144(3), pages 492-500, February.
    6. Suneja, S. K. & Aggarwal, Sunila & Davar, Sonia, 2002. "Multiobjective symmetric duality involving cones," European Journal of Operational Research, Elsevier, vol. 141(3), pages 471-479, September.
    7. Mishra, S. K., 2000. "Second order symmetric duality in mathematical programming with F-convexity," European Journal of Operational Research, Elsevier, vol. 127(3), pages 507-518, December.
    8. Yang, X. M. & Yang, X. Q. & Teo, K. L., 2003. "Non-differentiable second order symmetric duality in mathematical programming with F-convexity," European Journal of Operational Research, Elsevier, vol. 144(3), pages 554-559, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. Zălinescu, 2016. "On Second-Order Generalized Convexity," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 802-829, March.
    2. S. Gupta & N. Kailey, 2013. "Second-order multiobjective symmetric duality involving cone-bonvex functions," Journal of Global Optimization, Springer, vol. 55(1), pages 125-140, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mishra, S.K. & Wang, S.Y. & Lai, K.K. & Yang, F.M., 2007. "Mixed symmetric duality in non-differentiable multiobjective mathematical programming," European Journal of Operational Research, Elsevier, vol. 181(1), pages 1-9, August.
    2. Mishra, S.K. & Lai, K.K., 2007. "Second order symmetric duality in multiobjective programming involving generalized cone-invex functions," European Journal of Operational Research, Elsevier, vol. 178(1), pages 20-26, April.
    3. C. Zălinescu, 2016. "On Second-Order Generalized Convexity," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 802-829, March.
    4. Ahmad, I. & Husain, Z., 2010. "On multiobjective second order symmetric duality with cone constraints," European Journal of Operational Research, Elsevier, vol. 204(3), pages 402-409, August.
    5. Mishra, S. K. & Wang, S. Y., 2005. "Second order symmetric duality for nonlinear multiobjective mixed integer programming," European Journal of Operational Research, Elsevier, vol. 161(3), pages 673-682, March.
    6. Mishra, S.K., 2006. "Mond-Weir type second order symmetric duality in non-differentiable minimax mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 170(2), pages 355-362, April.
    7. S. Gupta & N. Kailey, 2013. "Second-order multiobjective symmetric duality involving cone-bonvex functions," Journal of Global Optimization, Springer, vol. 55(1), pages 125-140, January.
    8. Suneja, S. K. & Aggarwal, Sunila & Davar, Sonia, 2002. "Multiobjective symmetric duality involving cones," European Journal of Operational Research, Elsevier, vol. 141(3), pages 471-479, September.
    9. Mishra, S. K., 2005. "Non-differentiable higher-order symmetric duality in mathematical programming with generalized invexity," European Journal of Operational Research, Elsevier, vol. 167(1), pages 28-34, November.
    10. Mishra, S.K. & Wang, S.Y. & Lai, K.K., 2009. "Symmetric duality for minimax mixed integer programming problems with pseudo-invexity," European Journal of Operational Research, Elsevier, vol. 198(1), pages 37-42, October.
    11. Chen, Xiuhong, 2004. "Minimax and symmetric duality for a class of multiobjective variational mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 154(1), pages 71-83, April.
    12. Yang, X. M. & Yang, X. Q. & Teo, K. L. & Hou, S. H., 2005. "Second order symmetric duality in non-differentiable multiobjective programming with F-convexity," European Journal of Operational Research, Elsevier, vol. 164(2), pages 406-416, July.
    13. Soleimani-damaneh, M., 2008. "Infinite (semi-infinite) problems to characterize the optimality of nonlinear optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 49-56, July.
    14. Anurag Jayswal & Shalini Jha & Ashish Kumar Prasad & Izhar Ahmad, 2018. "Second-Order Symmetric Duality in Variational Control Problems Over Cone Constraints," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-19, August.
    15. Mishra, S.K. & Wang, S.Y. & Lai, K.K., 2007. "Pseudolinear fuzzy mappings," European Journal of Operational Research, Elsevier, vol. 182(2), pages 965-970, October.
    16. Gupta, S.K. & Kailey, N., 2010. "A note on multiobjective second-order symmetric duality," European Journal of Operational Research, Elsevier, vol. 201(2), pages 649-651, March.
    17. Ahmad, I. & Husain, Z., 2007. "Minimax mixed integer symmetric duality for multiobjective variational problems," European Journal of Operational Research, Elsevier, vol. 177(1), pages 71-82, February.
    18. S. K. Suneja & Sunila Sharma & Priyanka Yadav, 2018. "Generalized higher-order cone-convex functions and higher-order duality in vector optimization," Annals of Operations Research, Springer, vol. 269(1), pages 709-725, October.
    19. Kim, Moon Hee & Kim, Do Sang, 2008. "Non-differentiable symmetric duality for multiobjective programming with cone constraints," European Journal of Operational Research, Elsevier, vol. 188(3), pages 652-661, August.
    20. Yang, X. M. & Yang, X. Q. & Teo, K. L. & Hou, S. H., 2005. "Multiobjective second-order symmetric duality with F-convexity," European Journal of Operational Research, Elsevier, vol. 165(3), pages 585-591, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:205:y:2010:i:2:p:247-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.