IDEAS home Printed from https://ideas.repec.org/a/spr/jeicoo/v14y2019i3d10.1007_s11403-018-0233-8.html
   My bibliography  Save this article

Fast traders and slow price adjustments: an artificial market with strategic interaction and transaction costs

Author

Listed:
  • Danilo Liuzzi

    (Ca’ Foscari University of Venice)

  • Paolo Pellizzari

    (Ca’ Foscari University of Venice)

  • Marco Tolotti

    (Ca’ Foscari University of Venice)

Abstract

In this paper, we propose an artificial market to model high-frequency trading where fast traders use threshold rules strategically to issue orders based on a signal reflecting the level of stochastic liquidity prevailing on the market. A market maker is in charge of adjusting prices (on a fast scale) and of setting closing prices and transaction costs on a daily basis, controlling for the volatility of returns and market activity. We first show that a baseline version of the model with no frictions is able to generate returns endowed with several stylized facts. This achievement suggests that the two time scales used in the model are one (possibly novel) way to obtain realistic market outcomes and that high-frequency trading can amplify liquidity shocks. We then explore whether transaction costs can be used to control excess volatility and improve market quality. While properly implemented taxation schemes may help in reducing volatility, care is needed to avoid excessively curbing activity in the market and intensifying the occurrence of abnormal peaks in returns.

Suggested Citation

  • Danilo Liuzzi & Paolo Pellizzari & Marco Tolotti, 2019. "Fast traders and slow price adjustments: an artificial market with strategic interaction and transaction costs," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 643-662, September.
  • Handle: RePEc:spr:jeicoo:v:14:y:2019:i:3:d:10.1007_s11403-018-0233-8
    DOI: 10.1007/s11403-018-0233-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11403-018-0233-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11403-018-0233-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    2. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(2), pages 235-260.
    3. Eric Budish & Peter Cramton & John Shim, 2015. "Editor's Choice The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1547-1621.
    4. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    5. Hasbrouck, Joel & Saar, Gideon, 2009. "Technology and liquidity provision: The blurring of traditional definitions," Journal of Financial Markets, Elsevier, vol. 12(2), pages 143-172, May.
    6. Jean-Pierre Nadal & Denis Phan & Mirta Gordon & Jean Vannimenus, 2005. "Multiple equilibria in a monopoly market with heterogeneous agents and externalities," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 557-568.
    7. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    8. Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
    9. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    10. Carl Chiarella & Xue-Zhong He & Lei Shi & Lijian Wei, 2017. "A behavioural model of investor sentiment in limit order markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 71-86, January.
    11. Denis Phan & Stephane Pajot & Jean-Pierre Nadal, 2003. "The Monopolist's Market with Discrete Choices and Network Externality Revisited: Small-Worlds, Phase Transition and Avalanches in an ACE Framework," Computing in Economics and Finance 2003 150, Society for Computational Economics.
    12. F. A. Lutz, 1961. "The Theory of Capital," International Economic Association Series, Palgrave Macmillan, number 978-1-349-08452-4 edited by D. C. Hague, December.
    13. Maslov, Sergei, 2000. "Simple model of a limit order-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(3), pages 571-578.
    14. Blake LeBaron & Ryuichi Yamamoto, 2008. "The Impact of Imitation on Long Memory in an Order-Driven Market," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 34(4), pages 504-517.
    15. Fontini, Fulvio & Sartori, Elena & Tolotti, Marco, 2016. "Are transaction taxes a cause of financial instability?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 57-70.
    16. Nicholas Kaldor, 1961. "Capital Accumulation and Economic Growth," International Economic Association Series, in: D. C. Hague (ed.), The Theory of Capital, chapter 0, pages 177-222, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    2. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    3. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    4. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    5. Tedeschi, Gabriele & Recchioni, Maria Cristina & Berardi, Simone, 2019. "An approach to identifying micro behavior: How banks’ strategies influence financial cycles," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 329-346.
    6. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    7. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    8. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    9. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    10. Leal, Sandrine Jacob & Napoletano, Mauro, 2019. "Market stability vs. market resilience: Regulatory policies experiments in an agent-based model with low- and high-frequency trading," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 15-41.
    11. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    12. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    13. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    14. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    15. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    16. Simone Berardi & Gabriele Tedeschi, 2016. "How banks’ strategies influence financial cycles: An approach to identifying micro behavior," Working Papers 2016/24, Economics Department, Universitat Jaume I, Castellón (Spain).
    17. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    18. Denis Phan, 2006. "Discrete Choices under Social Influence:Generic Properties," Post-Print halshs-00105857, HAL.
    19. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    20. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    21. Katahira, Kei & Chen, Yu & Akiyama, Eizo, 2021. "Self-organized Speculation Game for the spontaneous emergence of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    22. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jeicoo:v:14:y:2019:i:3:d:10.1007_s11403-018-0233-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.