IDEAS home Printed from https://ideas.repec.org/a/spr/jecfin/v48y2024i2d10.1007_s12197-023-09655-6.html
   My bibliography  Save this article

Asymmetric multifractality and dynamic efficiency in DeFi markets

Author

Listed:
  • Walid Mensi

    (Sultan Qaboos University
    University of Economics Ho Chi Minh City
    Gulati Institute of Finance and Taxation)

  • Anoop S. Kumar

    (University of Economics Ho Chi Minh City)

  • Xuan Vinh Vo

    (University of Economics Ho Chi Minh City)

  • Sang Hoon Kang

    (Pusan National University)

Abstract

This paper examines the asymmetric multifractality and efficiency in four DeFi assets (BAT-Basic Attention Token, LINK-Chainlink, MKR-Maker, and SNX-Synthetix) using the asymmetric MF-DFA approach and Hurst exponents. The results show different multifractality during downward and upward trends. Furthermore, the asymmetric multifractality intensifies with scale rises. Before the COVID-19 pandemic, BAT, Maker, and Link are more inefficient under upward trend and SNX under downward trend. Conversely, the four DeFi assets are more inefficient during downward trend. Link asset is the most inefficient market before and during COVID-19. These results have important implications for retail investors and funds mangers.

Suggested Citation

  • Walid Mensi & Anoop S. Kumar & Xuan Vinh Vo & Sang Hoon Kang, 2024. "Asymmetric multifractality and dynamic efficiency in DeFi markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 48(2), pages 280-297, June.
  • Handle: RePEc:spr:jecfin:v:48:y:2024:i:2:d:10.1007_s12197-023-09655-6
    DOI: 10.1007/s12197-023-09655-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12197-023-09655-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12197-023-09655-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Willa W. & Deo, Rohit S., 2006. "The Variance Ratio Statistic At Large Horizons," Econometric Theory, Cambridge University Press, vol. 22(2), pages 206-234, April.
    2. Cheah, Eng-Tuck & Mishra, Tapas & Parhi, Mamata & Zhang, Zhuang, 2018. "Long Memory Interdependency and Inefficiency in Bitcoin Markets," Economics Letters, Elsevier, vol. 167(C), pages 18-25.
    3. Lo, Andrew W. & MacKinlay, A. Craig, 1989. "The size and power of the variance ratio test in finite samples : A Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 40(2), pages 203-238, February.
    4. repec:cii:cepiie:2014-q4-140-60 is not listed on IDEAS
    5. Walid Mensi & Makram Beljid & Shunsuke Managi, 2014. "Structural breaks and the time-varying levels of weak-form efficiency in crude oil markets: Evidence from the Hurst exponent and Shannon entropy methods," International Economics, CEPII research center, issue 140, pages 89-106.
    6. repec:cii:cepiei:2014-q4-140-6 is not listed on IDEAS
    7. Shaen Corbet & John W. Goodell & Samet Gunay & Kerem Kaskaloglu, 2023. "Are DeFi tokens a separate asset class from conventional cryptocurrencies?," Annals of Operations Research, Springer, vol. 322(2), pages 609-630, March.
    8. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2022. "What drives DeFi prices? Investigating the effects of investor attention," Finance Research Letters, Elsevier, vol. 48(C).
    9. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    10. Choi, In, 1999. "Testing the Random Walk Hypothesis for Real Exchange Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 293-308, May-June.
    11. Mensi, Walid & Lee, Yun-Jung & Al-Yahyaee, Khamis Hamed & Sensoy, Ahmet & Yoon, Seong-Min, 2019. "Intraday downward/upward multifractality and long memory in Bitcoin and Ethereum markets: An asymmetric multifractal detrended fluctuation analysis," Finance Research Letters, Elsevier, vol. 31(C), pages 19-25.
    12. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    13. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. Kakinaka, Shinji & Umeno, Ken, 2022. "Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales," Research in International Business and Finance, Elsevier, vol. 62(C).
    4. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    5. Chowdhury, Mohammad Ashraful Ferdous & Abdullah, Mohammad & Alam, Masud & Abedin, Mohammad Zoynul & Shi, Baofeng, 2023. "NFTs, DeFi, and other assets efficiency and volatility dynamics: An asymmetric multifractality analysis," International Review of Financial Analysis, Elsevier, vol. 87(C).
    6. Aslam, Faheem & Memon, Bilal Ahmed & Hunjra, Ahmed Imran & Bouri, Elie, 2023. "The dynamics of market efficiency of major cryptocurrencies," Global Finance Journal, Elsevier, vol. 58(C).
    7. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    8. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    9. Mensi, Walid & Lee, Yun-Jung & Al-Yahyaee, Khamis Hamed & Sensoy, Ahmet & Yoon, Seong-Min, 2019. "Intraday downward/upward multifractality and long memory in Bitcoin and Ethereum markets: An asymmetric multifractal detrended fluctuation analysis," Finance Research Letters, Elsevier, vol. 31(C), pages 19-25.
    10. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    11. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    12. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    13. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2011. "Testing the martingale difference hypothesis in CO2 emission allowances," Economic Modelling, Elsevier, vol. 28(1), pages 27-35.
    14. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    15. Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
    16. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    17. Naeem, Muhammad Abubakr & Bouri, Elie & Peng, Zhe & Shahzad, Syed Jawad Hussain & Vo, Xuan Vinh, 2021. "Asymmetric efficiency of cryptocurrencies during COVID19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    18. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    19. Fang Wang & Marko Gacesa, 2024. "Semi-strong Efficient Market of Bitcoin and Twitter: an Analysis of Semantic Vector Spaces of Extracted Keywords and Light Gradient Boosting Machine Models," Papers 2409.15988, arXiv.org.
    20. Yao, Can-Zhong & Mo, Yi-Na & Zhang, Ze-Kun, 2021. "A study of the efficiency of the Chinese clean energy stock market and its correlation with the crude oil market based on an asymmetric multifractal scaling behavior analysis," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).

    More about this item

    Keywords

    G14;

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecfin:v:48:y:2024:i:2:d:10.1007_s12197-023-09655-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.