IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v7y2024i2d10.1007_s42001-024-00290-7.html
   My bibliography  Save this article

Fast meta-analytic approximations for relational event models: applications to data streams and multilevel data

Author

Listed:
  • Fabio Vieira

    (Tilburg University)

  • Roger Leenders

    (Tilburg University
    Jheronimus Academy of Data Science)

  • Joris Mulder

    (Tilburg University)

Abstract

Large relational-event history data stemming from large networks are becoming increasingly available due to recent technological developments (e.g. digital communication, online databases, etc). This opens many new doors to learn about complex interaction behavior between actors in temporal social networks. The relational event model has become the gold standard for relational event history analysis. Currently, however, the main bottleneck to fit relational events models is of computational nature in the form of memory storage limitations and computational complexity. Relational event models are therefore mainly used for relatively small data sets while larger, more interesting datasets, including multilevel data structures and relational event data streams, cannot be analyzed on standard desktop computers. This paper addresses this problem by developing approximation algorithms based on meta-analysis methods that can fit relational event models significantly faster while avoiding the computational issues. In particular, meta-analytic approximations are proposed for analyzing streams of relational event data, multilevel relational event data and potentially combinations thereof. The accuracy and the statistical properties of the methods are assessed using numerical simulations. Furthermore, real-world data are used to illustrate the potential of the methodology to study social interaction behavior in an organizational network and interaction behavior among political actors. The algorithms are implemented in the publicly available R package ’remx’.

Suggested Citation

  • Fabio Vieira & Roger Leenders & Joris Mulder, 2024. "Fast meta-analytic approximations for relational event models: applications to data streams and multilevel data," Journal of Computational Social Science, Springer, vol. 7(2), pages 1823-1859, October.
  • Handle: RePEc:spr:jcsosc:v:7:y:2024:i:2:d:10.1007_s42001-024-00290-7
    DOI: 10.1007/s42001-024-00290-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-024-00290-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-024-00290-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Patrick O. Perry & Patrick J. Wolfe, 2013. "Point process modelling for directed interaction networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 821-849, November.
    3. Steven Goodreau & James Kitts & Martina Morris, 2009. "Birds of a feather, or friend of a friend? using exponential random graph models to investigate adolescent social networks," Demography, Springer;Population Association of America (PAA), vol. 46(1), pages 103-125, February.
    4. Scott, John, 1988. "Social Network Analysis and Intercorporate Relations," Hitotsubashi Journal of commerce and management, Hitotsubashi University, vol. 23(1), pages 53-68, December.
    5. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    6. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    7. Mulder, Joris & Leenders, Roger Th.A.J., 2019. "Modeling the evolution of interaction behavior in social networks: A dynamic relational event approach for real-time analysis," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 73-85.
    8. Ippel, L. & Kaptein, M.C. & Vermunt, J.K., 2019. "Online estimation of individual-level effects using streaming shrinkage factors," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 16-32.
    9. L. Ippel & M. C. Kaptein & J. K. Vermunt, 2019. "Estimating Multilevel Models on Data Streams," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 41-64, March.
    10. Yeojin Chung & Andrew Gelman & Sophia Rabe-Hesketh & Jingchen Liu & Vincent Dorie, 2015. "Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models," Journal of Educational and Behavioral Statistics, , vol. 40(2), pages 136-157, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
    2. Tomáš Lintner & Tomáš Diviák & Klára Šeďová & Petr Hlado, 2023. "Ukrainian refugees struggling to integrate into Czech school social networks," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    3. Cinar, Ozan & Nakagawa, Shinichi & Viechtbauer, Wolfgang, 2020. "Phylogenetic multilevel meta-analysis: A simulation study on the importance of modeling the phylogeny," EcoEvoRxiv su4zv, Center for Open Science.
    4. Nohe, Christoph & Hüffmeier, Joachim & Bürkner, Paul & Mazei, Jens & Sondern, Dominik & Runte, Antonia & Sieber, Franziska & Hertel, Guido, 2022. "Unethical choice in negotiations: A meta-analysis on gender differences and their moderators," Organizational Behavior and Human Decision Processes, Elsevier, vol. 173(C).
    5. Peter Hartley & Patricia Costello & Rachel Fenner & Nathalie Gibbins & Édáin Quinn & Isla Kuhn & Victoria L Keevil & Roman Romero-Ortuno, 2019. "Change in skeletal muscle associated with unplanned hospital admissions in adult patients: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-21, January.
    6. Fahad M. Al Amer & Christopher G. Thompson & Lifeng Lin, 2021. "Bayesian Methods for Meta-Analyses of Binary Outcomes: Implementations, Examples, and Impact of Priors," IJERPH, MDPI, vol. 18(7), pages 1-14, March.
    7. Tyler Blazey & Abraham Z Snyder & Manu S Goyal & Andrei G Vlassenko & Marcus E Raichle, 2018. "A systematic meta-analysis of oxygen-to-glucose and oxygen-to-carbohydrate ratios in the resting human brain," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-14, September.
    8. Vishesh Karwa & Pavel N. Krivitsky & Aleksandra B. Slavković, 2017. "Sharing social network data: differentially private estimation of exponential family random-graph models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 481-500, April.
    9. Bachmann, Federico & Liseras, Natacha & Graña, Fernando Manuel, 2021. "Innovative performance and firm size: a meta-regression analysis," Nülan. Deposited Documents 3614, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    10. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    11. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    12. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    13. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    14. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    15. Heinrich, Torsten & Yang, Jangho & Dai, Shuanping, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," MPRA Paper 105011, University Library of Munich, Germany.
    16. repec:cup:judgdm:v:15:y:2020:i:6:p:972-988 is not listed on IDEAS
    17. Jonas Schmidt & Tammo H. A. Bijmolt, 2020. "Accurately measuring willingness to pay for consumer goods: a meta-analysis of the hypothetical bias," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 499-518, May.
    18. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    19. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 3," Medical Decision Making, , vol. 33(5), pages 618-640, July.
    20. Mario Herberz & Tobias Brosch & Ulf J. J. Hahnel, 2020. "Kilo what? Default units increase value sensitivity in joint evaluations of energy efficiency," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(6), pages 972-988, November.
    21. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:7:y:2024:i:2:d:10.1007_s42001-024-00290-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.