IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v1y2018i1d10.1007_s42001-017-0007-4.html
   My bibliography  Save this article

Computational social scientist beware: Simpson’s paradox in behavioral data

Author

Listed:
  • Kristina Lerman

    (USC Information Sciences Institute)

Abstract

Observational data about human behavior are often heterogeneous, i.e., generated by subgroups within the population under study that vary in size and behavior. Heterogeneity predisposes analysis to Simpson’s paradox, whereby the trends observed in data that have been aggregated over the entire population may be substantially different from those of the underlying subgroups. I illustrate Simpson’s paradox with several examples coming from studies of online behavior and show that aggregate response leads to wrong conclusions about the underlying individual behavior. I then present a simple method to test whether Simpson’s paradox is affecting results of analysis. The presence of Simpson’s paradox in social data suggests that important behavioral differences exist within the population, and failure to take these differences into account can distort the studies’ findings.

Suggested Citation

  • Kristina Lerman, 2018. "Computational social scientist beware: Simpson’s paradox in behavioral data," Journal of Computational Social Science, Springer, vol. 1(1), pages 49-58, January.
  • Handle: RePEc:spr:jcsosc:v:1:y:2018:i:1:d:10.1007_s42001-017-0007-4
    DOI: 10.1007/s42001-017-0007-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-017-0007-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-017-0007-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philipp Singer & Emilio Ferrara & Farshad Kooti & Markus Strohmaier & Kristina Lerman, 2016. "Evidence of Online Performance Deterioration in User Sessions on Reddit," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Jason & Hall, Seventy F. & Sage, Melanie & Du, Yuhao & Joseph, Kenneth, 2024. "A computational social science approach to understanding predictors of Chafee service receipt," Children and Youth Services Review, Elsevier, vol. 158(C).
    2. Minda Hu & Ashwin Rao & Mayank Kejriwal & Kristina Lerman, 2021. "Socioeconomic Correlates of Anti-Science Attitudes in the US," Future Internet, MDPI, vol. 13(6), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan O. Hodas & Jacob Hunter & Stephen J. Young & Kristina Lerman, 2018. "Model of cognitive dynamics predicts performance on standardized tests," Journal of Computational Social Science, Springer, vol. 1(2), pages 295-312, September.
    2. Prasha Shrestha & Arun Sathanur & Suraj Maharjan & Emily Saldanha & Dustin Arendt & Svitlana Volkova, 2020. "Multiple social platforms reveal actionable signals for software vulnerability awareness: A study of GitHub, Twitter and Reddit," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:1:y:2018:i:1:d:10.1007_s42001-017-0007-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.