IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v6y2002i1d10.1023_a1013385216761.html
   My bibliography  Save this article

The Knapsack Sharing Problem: An Exact Algorithm

Author

Listed:
  • Mhand Hifi

    (Université de Paris 1 Panthéon-Sorbonne
    PRiSM, Université de Versailles St-Quentin-en-Yvelines)

  • Slim Sadfi

    (Université de Paris 1 Panthéon-Sorbonne
    Université de Paris XI)

Abstract

In this paper, we propose an exact algorithm for the knapsack sharing problem. The proposed algorithm seems quite efficient in the sense that it solves quickly some large problem instances. The problem is decomposed into a series of single constraint knapsack problems; and by applying the dynamic programming and another strategy, we solve optimally the original problem. The performance of the exact algorithm is evaluated on a set of medium and large problem instances (a total of 240 problem instances). This algorithm is parallelizable and this is one of its important feature.

Suggested Citation

  • Mhand Hifi & Slim Sadfi, 2002. "The Knapsack Sharing Problem: An Exact Algorithm," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 35-54, March.
  • Handle: RePEc:spr:jcomop:v:6:y:2002:i:1:d:10.1023_a:1013385216761
    DOI: 10.1023/A:1013385216761
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1013385216761
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1013385216761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher S. Tang, 1988. "A Max-Min Allocation Problem: Its Solutions and Applications," Operations Research, INFORMS, vol. 36(2), pages 359-367, April.
    2. Luss, Hanan, 1992. "Minimax resource allocation problems: Optimization and parametric analysis," European Journal of Operational Research, Elsevier, vol. 60(1), pages 76-86, July.
    3. Hifi, M. & Zissimopoulos, V., 1996. "A recursive exact algorithm for weighted two-dimensional cutting," European Journal of Operational Research, Elsevier, vol. 91(3), pages 553-564, June.
    4. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    5. J. Randall Brown, 1979. "The Knapsack Sharing Problem," Operations Research, INFORMS, vol. 27(2), pages 341-355, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fujimoto, Masako & Yamada, Takeo, 2006. "An exact algorithm for the knapsack sharing problem with common items," European Journal of Operational Research, Elsevier, vol. 171(2), pages 693-707, June.
    2. Dahmani, Isma & Hifi, Mhand & Wu, Lei, 2016. "An exact decomposition algorithm for the generalized knapsack sharing problem," European Journal of Operational Research, Elsevier, vol. 252(3), pages 761-774.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujimoto, Masako & Yamada, Takeo, 2006. "An exact algorithm for the knapsack sharing problem with common items," European Journal of Operational Research, Elsevier, vol. 171(2), pages 693-707, June.
    2. Yamada, Takeo & Futakawa, Mayumi & Kataoka, Seiji, 1998. "Some exact algorithms for the knapsack sharing problem," European Journal of Operational Research, Elsevier, vol. 106(1), pages 177-183, April.
    3. Hanan Luss, 1999. "On Equitable Resource Allocation Problems: A Lexicographic Minimax Approach," Operations Research, INFORMS, vol. 47(3), pages 361-378, June.
    4. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    5. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    6. Klein, Rachelle S. & Luss, Hanan & Rothblum, Uriel G., 1995. "Multiperiod allocation of substitutable resources," European Journal of Operational Research, Elsevier, vol. 85(3), pages 488-503, September.
    7. Lisa M. Betts & J. Randall Brown & Hanan Luss, 1994. "Minimax resource allocation problems with ordering constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(6), pages 719-738, October.
    8. Mhand Hifi & Catherine Roucairol, 2001. "Approximate and Exact Algorithms for Constrained (Un) Weighted Two-dimensional Two-staged Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 5(4), pages 465-494, December.
    9. Mhand Hifi, 2004. "Dynamic Programming and Hill-Climbing Techniques for Constrained Two-Dimensional Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 65-84, March.
    10. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    11. Parada Daza, Victor & Gomes de Alvarenga, Arlindo & de Diego, Jose, 1995. "Exact solutions for constrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 633-644, August.
    12. Suliman, S.M.A., 2006. "A sequential heuristic procedure for the two-dimensional cutting-stock problem," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 177-185, February.
    13. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    14. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
    15. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    16. Hervé Moulin & Jay Sethuraman, 2013. "The Bipartite Rationing Problem," Operations Research, INFORMS, vol. 61(5), pages 1087-1100, October.
    17. Hifi, Mhand & M'Hallah, Rym, 2006. "Strip generation algorithms for constrained two-dimensional two-staged cutting problems," European Journal of Operational Research, Elsevier, vol. 172(2), pages 515-527, July.
    18. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    19. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    20. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:6:y:2002:i:1:d:10.1023_a:1013385216761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.