Balanced connected partitions of graphs: approximation, parameterization and lower bounds
Author
Abstract
Suggested Citation
DOI: 10.1007/s10878-023-01058-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ravi Kannan, 1987. "Minkowski's Convex Body Theorem and Integer Programming," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 415-440, August.
- H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Weidong & Ou, Jinwen, 2024. "Machine scheduling with restricted rejection: An Application to task offloading in cloud–edge collaborative computing," European Journal of Operational Research, Elsevier, vol. 314(3), pages 912-919.
- Niclas Boehmer & Edith Elkind, 2020. "Stable Roommate Problem with Diversity Preferences," Papers 2004.14640, arXiv.org.
- Klaus Jansen & Kim-Manuel Klein & José Verschae, 2020. "Closing the Gap for Makespan Scheduling via Sparsification Techniques," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1371-1392, November.
- Klaus Jansen & Roberto Solis-Oba, 2011. "A Polynomial Time OPT + 1 Algorithm for the Cutting Stock Problem with a Constant Number of Object Lengths," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 743-753, November.
- Matthias Bentert & Robert Bredereck & Péter Györgyi & Andrzej Kaczmarczyk & Rolf Niedermeier, 2023. "A multivariate complexity analysis of the material consumption scheduling problem," Journal of Scheduling, Springer, vol. 26(4), pages 369-382, August.
- William Cook & Thomas Rutherford & Herbert E. Scarf & David F. Shallcross, 1991. "An Implementation of the Generalized Basis Reduction Algorithm for Integer Programming," Cowles Foundation Discussion Papers 990, Cowles Foundation for Research in Economics, Yale University.
- D. V. Gribanov & D. S. Malyshev & P. M. Pardalos & S. I. Veselov, 2018. "FPT-algorithms for some problems related to integer programming," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1128-1146, May.
- A. Yu. Chirkov & D. V. Gribanov & D. S. Malyshev & P. M. Pardalos & S. I. Veselov & N. Yu. Zolotykh, 2019. "On the complexity of quasiconvex integer minimization problem," Journal of Global Optimization, Springer, vol. 73(4), pages 761-788, April.
- K. Aardal & R. E. Bixby & C. A. J. Hurkens & A. K. Lenstra & J. W. Smeltink, 2000. "Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 192-202, August.
- Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
- Friedrich Eisenbrand & Gennady Shmonin, 2008. "Parametric Integer Programming in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 839-850, November.
- Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
- Chen, Lin & Ye, Deshi & Zhang, Guochuan, 2018. "Parallel machine scheduling with speed-up resources," European Journal of Operational Research, Elsevier, vol. 268(1), pages 101-112.
- Danny Nguyen & Igor Pak, 2020. "The Computational Complexity of Integer Programming with Alternations," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 191-204, February.
- Sascha Kurz & Nikolas Tautenhahn, 2013. "On Dedekind’s problem for complete simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 411-437, May.
- Elizabeth Baldwin & Paul Klemperer, 2019.
"Understanding Preferences: “Demand Types”, and the Existence of Equilibrium With Indivisibilities,"
Econometrica, Econometric Society, vol. 87(3), pages 867-932, May.
- Elizabeth Baldwin & Paul Klemperer, 2015. "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium with Indivisibilities," Economics Papers 2015-W10, Economics Group, Nuffield College, University of Oxford.
- Klemperer, Paul & Baldwin, Elizabeth, 2019. "Understanding Preferences: "Demand Types", and the Existence of Equilibrium with Indivisibilities," CEPR Discussion Papers 13586, C.E.P.R. Discussion Papers.
- Baldwin, Elizabeth & Klemperer, Paul, 2016. "Understanding preferences: "demand types", and the existence of equilibrium with indivisibilities," LSE Research Online Documents on Economics 63198, London School of Economics and Political Science, LSE Library.
- Herbert E. Scarf & David F. Shallcross, 2008.
"The Frobenius Problem and Maximal Lattice Free Bodies,"
Palgrave Macmillan Books, in: Zaifu Yang (ed.), Herbert Scarf’s Contributions to Economics, Game Theory and Operations Research, chapter 7, pages 149-153,
Palgrave Macmillan.
- Herbert E. Scarf & Shallcross, David F., 1990. "The Frobenius Problem and Maximal Lattice Free Bodies," Cowles Foundation Discussion Papers 945, Cowles Foundation for Research in Economics, Yale University.
- Elhedhli, Samir & Naoum-Sawaya, Joe, 2015. "Improved branching disjunctions for branch-and-bound: An analytic center approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 37-45.
- Mauro Dell’Amico & Simone Falavigna & Manuel Iori, 2015. "Optimization of a Real-World Auto-Carrier Transportation Problem," Transportation Science, INFORMS, vol. 49(2), pages 402-419, May.
- Karen Aardal & Cor A. J. Hurkens & Arjen K. Lenstra, 2000. "Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 427-442, August.
More about this item
Keywords
Balanced connected partition; Fractional partition; Approximation algorithms; Fixed parameter tractable; Complexity lower bound;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:45:y:2023:i:5:d:10.1007_s10878-023-01058-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.