IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i4d10.1007_s10878-021-00787-1.html
   My bibliography  Save this article

An integrated method for hybrid distribution with estimation of demand matching degree

Author

Listed:
  • Ling Gai

    (Donghua University)

  • Ying Jin

    (Shanghai University)

  • Binyuan Zhang

    (Renji Hospital Affiliated to Shanghai Jiaotong University)

Abstract

Timely and effective distribution of relief materials is one of the most important aspects when fighting with a natural or a man-made disaster. Due to the sudden and urgent nature of most disasters, it is hard to make the exact prediction on the demand information. Meanwhile, timely delivery is also a problem. In this paper, taking the COVID-19 epidemic as an example, we propose an integrated method to fulfill both the demand estimation and the relief material distribution. We assume the relief supply is directed by government, so it is possible to arrange experts to evaluate the situation from aspects and coordinate supplies of different sources. The first part of the integrated method is a fuzzy decision-making process. The demand degrees on relief materials are estimated by extending COPRAS under interval 2-tuple linguistic environment. The second part includes the demand degrees as one of the inputs, conducts a hybrid distribution model to decide the allocation and routing. The key point of hybrid distribution is that each demand point could be visited by different vehicles and each vehicle could visit different demand points. Our method can also be extended to include both relief materials and medical staffs. A real-life case study of Wuhan, China is provided to illustrate the presented method.

Suggested Citation

  • Ling Gai & Ying Jin & Binyuan Zhang, 2022. "An integrated method for hybrid distribution with estimation of demand matching degree," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2782-2808, November.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:4:d:10.1007_s10878-021-00787-1
    DOI: 10.1007/s10878-021-00787-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00787-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00787-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren M. Hirsch & George B. Dantzig, 1968. "The fixed charge problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 15(3), pages 413-424, September.
    2. Moshe Dror & Pierre Trudeau, 1989. "Savings by Split Delivery Routing," Transportation Science, INFORMS, vol. 23(2), pages 141-145, May.
    3. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    4. Mulliner, Emma & Smallbone, Kieran & Maliene, Vida, 2013. "An assessment of sustainable housing affordability using a multiple criteria decision making method," Omega, Elsevier, vol. 41(2), pages 270-279.
    5. Liu, Wenqian & Ke, Ginger Y. & Chen, Jian & Zhang, Lianmin, 2020. "Scheduling the distribution of blood products: A vendor-managed inventory routing approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    6. Frank A. Tillman, 1969. "The Multiple Terminal Delivery Problem with Probabilistic Demands," Transportation Science, INFORMS, vol. 3(3), pages 192-204, August.
    7. Mulliner, Emma & Malys, Naglis & Maliene, Vida, 2016. "Comparative analysis of MCDM methods for the assessment of sustainable housing affordability," Omega, Elsevier, vol. 59(PB), pages 146-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keyong Lin & S. Nurmaya Musa & Hwa Jen Yap, 2022. "Vehicle Routing Optimization for Pandemic Containment: A Systematic Review on Applications and Solution Approaches," Sustainability, MDPI, vol. 14(4), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keyong Lin & S. Nurmaya Musa & Hwa Jen Yap, 2022. "Vehicle Routing Optimization for Pandemic Containment: A Systematic Review on Applications and Solution Approaches," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    2. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    3. Gawlik Remigiusz & Głuszak Michał & Małkowska Agnieszka, 2017. "The Measurement of Housing Preferences in the Analytic Hierarchy Process," Folia Oeconomica Stetinensia, Sciendo, vol. 17(1), pages 31-43, June.
    4. Jinil Han & Chungmok Lee & Sungsoo Park, 2014. "A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times," Transportation Science, INFORMS, vol. 48(3), pages 373-390, August.
    5. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Brain, Isabel & Prieto, Joaquin, 2021. "Understanding changes in the geography of opportunity over time: the case of Santiago, Chile," LSE Research Online Documents on Economics 109915, London School of Economics and Political Science, LSE Library.
    7. Soriano, Adria & Gansterer, Margaretha & Hartl, Richard F., 2023. "The multi-depot vehicle routing problem with profit fairness," International Journal of Production Economics, Elsevier, vol. 255(C).
    8. Berbotto, Leonardo & García, Sergio & Nogales, Francisco J., 2011. "A vehicle routing model with split delivery and stop nodes," DES - Working Papers. Statistics and Econometrics. WS ws110906, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Laura Tupenaite & Arturas Kaklauskas & Irene Lill & Ineta Geipele & Jurga Naimaviciene & Loreta Kanapeckiene & Linda Kauskale, 2018. "Sustainability Assessment of the New Residential Projects in the Baltic States: A Multiple Criteria Approach," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    10. Ikenna Stephen Ezennia & Sebnem Onal Hoskara, 2019. "Exploring the Severity of Factors Influencing Sustainable Affordable Housing Choice: Evidence from Abuja, Nigeria," Sustainability, MDPI, vol. 11(20), pages 1-25, October.
    11. Yangkun Xia & Zhuo Fu & Lijun Pan & Fenghua Duan, 2018. "Tabu search algorithm for the distance-constrained vehicle routing problem with split deliveries by order," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    12. Rui Xu & Yumiao Huang & Wei Xiao, 2023. "A Two-Level Variable Neighborhood Descent for a Split Delivery Clustered Vehicle Routing Problem with Soft Cluster Conflicts and Customer-Related Costs," Sustainability, MDPI, vol. 15(9), pages 1-22, May.
    13. Allahyari, Somayeh & Salari, Majid & Vigo, Daniele, 2015. "A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 242(3), pages 756-768.
    14. Laura Tupenaite & Irene Lill & Ineta Geipele & Jurga Naimaviciene, 2017. "Ranking of Sustainability Indicators for Assessment of the New Housing Development Projects: Case of the Baltic States," Resources, MDPI, vol. 6(4), pages 1-21, October.
    15. Amin Vafadarnikjoo & Madjid Tavana & Tiago Botelho & Konstantinos Chalvatzis, 2020. "A neutrosophic enhanced best–worst method for considering decision-makers’ confidence in the best and worst criteria," Annals of Operations Research, Springer, vol. 289(2), pages 391-418, June.
    16. Yufu Ning & Taoyong Su, 2017. "A multilevel approach for modelling vehicle routing problem with uncertain travelling time," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 683-688, March.
    17. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    18. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    19. Soriano, Adria & Gansterer, Margaretha & Hartl, Richard F., 2022. "Reprint of: The multi-depot vehicle routing problem with profit fairness," International Journal of Production Economics, Elsevier, vol. 250(C).
    20. Keshavarz Ghorabaee, Mehdi & Amiri, Maghsoud & Zavadskas, Edmundas Kazimieras & Turskis, Zenonas & Antucheviciene, Jurgita, 2017. "A new hybrid simulation-based assignment approach for evaluating airlines with multiple service quality criteria," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 45-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:4:d:10.1007_s10878-021-00787-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.