IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v43y2022i4d10.1007_s10878-021-00804-3.html
   My bibliography  Save this article

Population monotonicity in matching games

Author

Listed:
  • Han Xiao

    (Ocean University of China)

  • Qizhi Fang

    (Ocean University of China)

Abstract

The matching game is a cooperative profit game defined on an edge-weighted graph, where the players are the vertices and the profit of a coalition is the maximum weight of matchings in the subgraph induced by the coalition. A population monotonic allocation scheme is a collection of rules defining how to share the profit among players in each coalition such that every player is better off when the coalition expands. In this paper, we study matching games and provide a necessary and sufficient characterization for the existence of population monotonic allocation schemes. Our characterization implies that whether a matching game admits population monotonic allocation schemes can be determined efficiently.

Suggested Citation

  • Han Xiao & Qizhi Fang, 2022. "Population monotonicity in matching games," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 699-709, May.
  • Handle: RePEc:spr:jcomop:v:43:y:2022:i:4:d:10.1007_s10878-021-00804-3
    DOI: 10.1007/s10878-021-00804-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00804-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00804-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hervé Moulin & Scott Shenker, 2001. "Strategyproof sharing of submodular costs:budget balance versus efficiency," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(3), pages 511-533.
    2. Vijay V. Vazirani, 2021. "The General Graph Matching Game: Approximate Core," Papers 2101.07390, arXiv.org, revised Jul 2021.
    3. Péter Biró & Walter Kern & Daniël Paulusma, 2012. "Computing solutions for matching games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 75-90, February.
    4. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    5. Xiaotie Deng & Toshihide Ibaraki & Hiroshi Nagamochi, 1999. "Algorithmic Aspects of the Core of Combinatorial Optimization Games," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 751-766, August.
    6. Johan Karlander & Kimmo Eriksson, 2001. "Stable outcomes of the roommate game with transferable utility," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(4), pages 555-569.
    7. Solymosi, Tamas & Raghavan, Tirukkannamangai E S, 1994. "An Algorithm for Finding the Nucleolus of Asignment Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(2), pages 119-143.
    8. Toda, Manabu, 2005. "Axiomatization of the core of assignment games," Games and Economic Behavior, Elsevier, vol. 53(2), pages 248-261, November.
    9. Walter Kern & Daniël Paulusma, 2003. "Matching Games: The Least Core and the Nucleolus," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 294-308, May.
    10. Francesc Llerena & Marina Núñez & Carles Rafels, 2015. "An axiomatization of the nucleolus of assignment markets," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 1-15, February.
    11. HervÊ Moulin, 1999. "Incremental cost sharing: Characterization by coalition strategy-proofness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(2), pages 279-320.
    12. T. E. S. Raghavan & Tamás Solymosi, 2001. "Assignment games with stable core," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 177-185.
    13. Bettina Klaus & Alexandru Nichifor, 2010. "Consistency in one-sided assignment problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 35(3), pages 415-433, September.
    14. Nunez, Marina & Rafels, Carles, 2003. "Characterization of the extreme core allocations of the assignment game," Games and Economic Behavior, Elsevier, vol. 44(2), pages 311-331, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biró, Péter & Kern, Walter & Paulusma, Daniël & Wojuteczky, Péter, 2018. "The stable fixtures problem with payments," Games and Economic Behavior, Elsevier, vol. 108(C), pages 245-268.
    2. Péter Biró & Walter Kern & Daniël Paulusma, 2012. "Computing solutions for matching games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 75-90, February.
    3. Han Xiao & Tianhang Lu & Qizhi Fang, 2021. "Approximate Core Allocations for Multiple Partners Matching Games," Papers 2107.01442, arXiv.org, revised Oct 2021.
    4. Vijay V. Vazirani, 2022. "New Characterizations of Core Imputations of Matching and $b$-Matching Games," Papers 2202.00619, arXiv.org, revised Dec 2022.
    5. Vazirani, Vijay V., 2022. "The general graph matching game: Approximate core," Games and Economic Behavior, Elsevier, vol. 132(C), pages 478-486.
    6. Frits Hof & Walter Kern & Sascha Kurz & Kanstantsin Pashkovich & Daniël Paulusma, 2020. "Simple games versus weighted voting games: bounding the critical threshold value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(4), pages 609-621, April.
    7. Juarez, Ruben, 2013. "Group strategyproof cost sharing: The role of indifferences," Games and Economic Behavior, Elsevier, vol. 82(C), pages 218-239.
    8. Tamás Solymosi, 2024. "Assignment games with population monotonic allocation schemes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 62(1), pages 67-88, February.
    9. R. Branzei & E. Gutiérrez & N. Llorca & J. Sánchez-Soriano, 2021. "Does it make sense to analyse a two-sided market as a multi-choice game?," Annals of Operations Research, Springer, vol. 301(1), pages 17-40, June.
    10. Xiaotie Deng & Qizhi Fang & Xiaoxun Sun, 2009. "Finding nucleolus of flow game," Journal of Combinatorial Optimization, Springer, vol. 18(1), pages 64-86, July.
    11. Vijay V. Vazirani, 2022. "Cores of Games via Total Dual Integrality, with Applications to Perfect Graphs and Polymatroids," Papers 2209.04903, arXiv.org, revised Nov 2022.
    12. Shellshear, Evan & Sudhölter, Peter, 2009. "On core stability, vital coalitions, and extendability," Games and Economic Behavior, Elsevier, vol. 67(2), pages 633-644, November.
    13. Martínez-de-Albéniz, F. Javier & Núñez, Marina & Rafels, Carles, 2011. "Assignment markets with the same core," Games and Economic Behavior, Elsevier, vol. 73(2), pages 553-563.
    14. Akiyoshi Shioura, 2017. "On the Partnership formation problem," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 2(1), pages 105-140, December.
    15. F.Javier Martínez-de-Albéniz & Carles Rafels & Neus Ybern, 2015. "Insights into the nucleolus of the assignment game," UB School of Economics Working Papers 2015/333, University of Barcelona School of Economics.
    16. Walter Kern & Daniël Paulusma, 2003. "Matching Games: The Least Core and the Nucleolus," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 294-308, May.
    17. Gudmundsson, Jens, 2013. "Cycles and Third-Party Payments in the Partnership Formation Problem," Working Papers 2013:16, Lund University, Department of Economics.
    18. Tobias Harks & Martin Hoefer & Anja Schedel & Manuel Surek, 2021. "Efficient Black-Box Reductions for Separable Cost Sharing," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 134-158, February.
    19. van Velzen, S., 2005. "Simple Combinatorial Optimisation Cost Games," Discussion Paper 2005-118, Tilburg University, Center for Economic Research.
    20. Tamas Solymosi & Balazs Sziklai, 2015. "Universal Characterization Sets for the Nucleolus in Balanced Games," CERS-IE WORKING PAPERS 1512, Institute of Economics, Centre for Economic and Regional Studies.

    More about this item

    Keywords

    Cooperative game theory; Matching game; Population monotonic allocation scheme;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:43:y:2022:i:4:d:10.1007_s10878-021-00804-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.