IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v42y2021i3d10.1007_s10878-019-00419-9.html
   My bibliography  Save this article

Batch scheduling of nonidentical job sizes with minsum criteria

Author

Listed:
  • Rongqi Li

    (Zhejiang University)

  • Zhiyi Tan

    (Zhejiang University)

  • Qianyu Zhu

    (Zhejiang University)

Abstract

This paper concerns the problem of scheduling jobs with unit processing time and nonidentical sizes on single or parallel identical batch machines. The objective is to minimize the total completion time of all jobs. We show that the worst-case ratio of the algorithm based on the bin-packing algorithm First Fit Increasing lies in the interval $$\left[ \frac{109}{82}, \frac{2+\sqrt{2}}{2}\right] \approx [1.3293, 1.7071]$$ 109 82 , 2 + 2 2 ≈ [ 1.3293 , 1.7071 ] for the single machine case, and is no more than $$\frac{6+\sqrt{2}}{4}\approx 1.8536$$ 6 + 2 4 ≈ 1.8536 for the parallel machines case.

Suggested Citation

  • Rongqi Li & Zhiyi Tan & Qianyu Zhu, 2021. "Batch scheduling of nonidentical job sizes with minsum criteria," Journal of Combinatorial Optimization, Springer, vol. 42(3), pages 543-564, October.
  • Handle: RePEc:spr:jcomop:v:42:y:2021:i:3:d:10.1007_s10878-019-00419-9
    DOI: 10.1007/s10878-019-00419-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-019-00419-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-019-00419-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorit S. Hochbaum & Dan Landy, 1997. "Scheduling Semiconductor Burn-In Operations to Minimize Total Flowtime," Operations Research, INFORMS, vol. 45(6), pages 874-885, December.
    2. Shoshana Anily & Julien Bramel & David Simchi-Levi, 1994. "Worst-Case Analysis of Heuristics for the Bin Packing Problem with General Cost Structures," Operations Research, INFORMS, vol. 42(2), pages 287-298, April.
    3. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongqi Li & Zhiyi Tan & Qianyu Zhu, 0. "Batch scheduling of nonidentical job sizes with minsum criteria," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    2. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    3. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    4. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    5. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    6. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.
    7. Bo Chen & Xiaotie Deng & Wenan Zang, 2004. "On-Line Scheduling a Batch Processing System to Minimize Total Weighted Job Completion Time," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 85-95, March.
    8. Tang, Lixin & Zhao, Yufang, 2008. "Scheduling a single semi-continuous batching machine," Omega, Elsevier, vol. 36(6), pages 992-1004, December.
    9. Lin, Ran & Wang, Jun-Qiang & Oulamara, Ammar, 2023. "Online scheduling on parallel-batch machines with periodic availability constraints and job delivery," Omega, Elsevier, vol. 116(C).
    10. Li, Kai & Jia, Zhao-hong & Leung, Joseph Y.-T., 2015. "Integrated production and delivery on parallel batching machines," European Journal of Operational Research, Elsevier, vol. 247(3), pages 755-763.
    11. Damodaran, Purushothaman & Kumar Manjeshwar, Praveen & Srihari, Krishnaswami, 2006. "Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 103(2), pages 882-891, October.
    12. Jason Pan & Chi-Shiang Su, 2015. "Two parallel machines problem with job delivery coordination and availability constraint," Annals of Operations Research, Springer, vol. 235(1), pages 653-664, December.
    13. Altekin, F. Tevhide & Bukchin, Yossi, 2022. "A multi-objective optimization approach for exploring the cost and makespan trade-off in additive manufacturing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 235-253.
    14. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    15. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    16. Chuangyin Dang & Liying Kang, 2004. "Batch-Processing Scheduling with Setup Times," Journal of Combinatorial Optimization, Springer, vol. 8(2), pages 137-146, June.
    17. Biber Nurit & Mor Baruch & Schlissel Yitzhak & Shapira Dana, 2023. "Lot scheduling involving completion time problems on identical parallel machines," Operational Research, Springer, vol. 23(1), pages 1-29, March.
    18. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    19. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    20. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:42:y:2021:i:3:d:10.1007_s10878-019-00419-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.