IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v3y1999i1d10.1023_a1009873324187.html
   My bibliography  Save this article

Analyses on the 2 and 3-Flip Neighborhoods for the MAX SAT

Author

Listed:
  • M. Yagiura

    (Kyoto University)

  • T. Ibaraki

    (Kyoto University)

Abstract

For problems SAT and MAX SAT, local search algorithms are widely acknowledged as one of the most effective approaches. Most of the local search algorithms are based on the 1-flip neighborhood, which is the set of solutions obtainable by flipping the truth assignment of one variable. In this paper, we consider r-flip neighborhoods for r ≥ 2, and propose, for r = 2, 3, new implementations that reduce the number of candidates in the neighborhood without sacrificing the solution quality. For 2-flip (resp., 3-flip) neighborhood, we show that its expected size is O(n + m) (resp., O(m + t2n)), which is usually much smaller than the original size O(n2) (resp., O(n3)), where n is the number of variables, m is the number of clauses and t is the maximum number of appearances of one variable. Computational results tell that these estimates by the expectation well represent the real performance.

Suggested Citation

  • M. Yagiura & T. Ibaraki, 1999. "Analyses on the 2 and 3-Flip Neighborhoods for the MAX SAT," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 95-114, July.
  • Handle: RePEc:spr:jcomop:v:3:y:1999:i:1:d:10.1023_a:1009873324187
    DOI: 10.1023/A:1009873324187
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1009873324187
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1009873324187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    2. Michael Drexl, 2021. "On efficient testing of capacity constraints in pickup-and-delivery problems with trailers," 4OR, Springer, vol. 19(2), pages 289-307, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:3:y:1999:i:1:d:10.1023_a:1009873324187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.