IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v36y2018i3d10.1007_s10878-017-0169-2.html
   My bibliography  Save this article

Sum-of-squares rank upper bounds for matching problems

Author

Listed:
  • Adam Kurpisz

    (IDSIA)

  • Samuli Leppänen

    (IDSIA)

  • Monaldo Mastrolilli

    (IDSIA)

Abstract

The matching problem is one of the most studied combinatorial optimization problems in the context of extended formulations and convex relaxations. In this paper we provide upper bounds for the rank of the sum-of-squares/Lasserre hierarchy for a family of matching problems. In particular, we show that when the problem formulation is strengthened by incorporating the objective function in the constraints, the hierarchy requires at most $$\left\lceil \frac{k}{2} \right\rceil $$ k 2 levels to refute the existence of a perfect matching in an odd clique of size $$2k+1$$ 2 k + 1 .

Suggested Citation

  • Adam Kurpisz & Samuli Leppänen & Monaldo Mastrolilli, 2018. "Sum-of-squares rank upper bounds for matching problems," Journal of Combinatorial Optimization, Springer, vol. 36(3), pages 831-844, October.
  • Handle: RePEc:spr:jcomop:v:36:y:2018:i:3:d:10.1007_s10878-017-0169-2
    DOI: 10.1007/s10878-017-0169-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0169-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0169-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monique Laurent, 2003. "A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0--1 Programming," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 470-496, August.
    2. Michel X. Goemans & Levent Tunçel, 2001. "When Does the Positive Semidefiniteness Constraint Help in Lifting Procedures?," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 796-815, November.
    3. Pratik Worah, 2015. "Rank bounds for a hierarchy of Lovász and Schrijver," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 689-709, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pratik Worah, 2015. "Rank bounds for a hierarchy of Lovász and Schrijver," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 689-709, October.
    2. Laurent, Monique & Vargas, Luis Felipe, 2022. "Finite convergence of sum-of-squares hierarchies for the stability number of a graph," Other publications TiSEM 3998b864-7504-4cf4-bc1d-f, Tilburg University, School of Economics and Management.
    3. Alexander Razborov, 2017. "On the Width of Semialgebraic Proofs and Algorithms," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1106-1134, November.
    4. Thomas Rothvoß & Laura Sanità, 2017. "0/1 Polytopes with Quadratic Chvátal Rank," Operations Research, INFORMS, vol. 65(1), pages 212-220, February.
    5. Monique Laurent, 2003. "A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0--1 Programming," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 470-496, August.
    6. Adam Kurpisz & Samuli Leppänen & Monaldo Mastrolilli, 2017. "On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 135-143, January.
    7. Gábor Braun & Samuel Fiorini & Sebastian Pokutta & David Steurer, 2015. "Approximation Limits of Linear Programs (Beyond Hierarchies)," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 756-772, March.
    8. Monique Laurent, 2003. "Lower Bound for the Number of Iterations in Semidefinite Hierarchies for the Cut Polytope," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 871-883, November.
    9. Thomas Rothvoß & Laura Sanità, 2017. "0/1 Polytopes with Quadratic Chvátal Rank," Operations Research, INFORMS, vol. 65(1), pages 212-220, February.
    10. Tong Chen & Jean-Bernard Lasserre & Victor Magron & Edouard Pauwels, 2022. "A sublevel moment-SOS hierarchy for polynomial optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 31-66, January.
    11. de Klerk, E. & Pasechnik, D.V., 2009. "On Semidefinite Programming Relaxations of Association Schemes With Application to Combinatorial Optimization Problems," Other publications TiSEM 3b5033a4-98bc-4969-aa57-d, Tilburg University, School of Economics and Management.
    12. Sanjeeb Dash, 2005. "Exponential Lower Bounds on the Lengths of Some Classes of Branch-and-Cut Proofs," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 678-700, August.
    13. Kevin K. H. Cheung, 2007. "Computation of the Lasserre Ranks of Some Polytopes," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 88-94, February.
    14. de Klerk, E. & Pasechnik, D.V., 2005. "A Note on the Stability Number of an Orthogonality Graph," Other publications TiSEM 8fc31de5-93ae-4966-836a-f, Tilburg University, School of Economics and Management.
    15. Trang T. Nguyen & Jean-Philippe P. Richard & Mohit Tawarmalani, 2021. "Convexification techniques for linear complementarity constraints," Journal of Global Optimization, Springer, vol. 80(2), pages 249-286, June.
    16. Jean B. Lasserre & Kim-Chuan Toh & Shouguang Yang, 2017. "A bounded degree SOS hierarchy for polynomial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 87-117, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:36:y:2018:i:3:d:10.1007_s10878-017-0169-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.