IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v35y2018i1d10.1007_s10878-017-0151-z.html
   My bibliography  Save this article

A tight lower bound for the hardness of clutters

Author

Listed:
  • Vahan Mkrtchyan

    (Yerevan State University)

  • Hovhannes Sargsyan

    (Yerevan State University)

Abstract

A clutter (or antichain or Sperner family) L is a pair (V, E), where V is a finite set and E is a family of subsets of V none of which is a subset of another. Normally, the elements of V are called vertices of L, and the elements of E are called edges of L. A subset $$s_e$$ s e of an edge e of a clutter is recognizing for e, if $$s_e$$ s e is not a subset of another edge. The hardness of an edge e of a clutter is the ratio of the size of $$e\text {'s}$$ e 's smallest recognizing subset to the size of e. The hardness of a clutter is the maximum hardness of its edges. In this short note we prove a lower bound for the hardness of an arbitrary clutter. Our bound is asymptotically best-possible in a sense that there is an infinite sequence of clutters attaining our bound.

Suggested Citation

  • Vahan Mkrtchyan & Hovhannes Sargsyan, 2018. "A tight lower bound for the hardness of clutters," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 21-25, January.
  • Handle: RePEc:spr:jcomop:v:35:y:2018:i:1:d:10.1007_s10878-017-0151-z
    DOI: 10.1007/s10878-017-0151-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0151-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0151-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claussen, Jens Christian, 2007. "Offdiagonal complexity: A computationally quick complexity measure for graphs and networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 365-373.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuğal, İhsan & Karcı, Ali, 2019. "Comparisons of Karcı and Shannon entropies and their effects on centrality of social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 352-363.
    2. Roanes-Lozano, Eugenio & Laita, Luis M. & Roanes-Macías, Eugenio & Wester, Michael J. & Ruiz-Lozano, José Luis & Roncero, Carlos, 2009. "Evolution of railway network flexibility: The Spanish broad gauge case," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2317-2332.
    3. Lavanya Sivakumar & Matthias Dehmer, 2012. "Towards Information Inequalities for Generalized Graph Entropies," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    4. Kim, Jongkwang & Wilhelm, Thomas, 2008. "What is a complex graph?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2637-2652.
    5. Frank Emmert-Streib, 2013. "Structural Properties and Complexity of a New Network Class: Collatz Step Graphs," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:35:y:2018:i:1:d:10.1007_s10878-017-0151-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.