IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v375y2007i1p365-373.html
   My bibliography  Save this article

Offdiagonal complexity: A computationally quick complexity measure for graphs and networks

Author

Listed:
  • Claussen, Jens Christian

Abstract

A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power-law distribution. This approach is extended to the node–node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This offdiagonal complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.

Suggested Citation

  • Claussen, Jens Christian, 2007. "Offdiagonal complexity: A computationally quick complexity measure for graphs and networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 365-373.
  • Handle: RePEc:eee:phsmap:v:375:y:2007:i:1:p:365-373
    DOI: 10.1016/j.physa.2006.08.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106009484
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.08.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer-Ortmanns, Hildegard, 2004. "Functional complexity measure for networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 679-690.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roanes-Lozano, Eugenio & Laita, Luis M. & Roanes-Macías, Eugenio & Wester, Michael J. & Ruiz-Lozano, José Luis & Roncero, Carlos, 2009. "Evolution of railway network flexibility: The Spanish broad gauge case," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2317-2332.
    2. Kim, Jongkwang & Wilhelm, Thomas, 2008. "What is a complex graph?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2637-2652.
    3. Tuğal, İhsan & Karcı, Ali, 2019. "Comparisons of Karcı and Shannon entropies and their effects on centrality of social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 352-363.
    4. Frank Emmert-Streib, 2013. "Structural Properties and Complexity of a New Network Class: Collatz Step Graphs," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-14, February.
    5. Lavanya Sivakumar & Matthias Dehmer, 2012. "Towards Information Inequalities for Generalized Graph Entropies," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    6. Vahan Mkrtchyan & Hovhannes Sargsyan, 2018. "A tight lower bound for the hardness of clutters," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 21-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:375:y:2007:i:1:p:365-373. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.