IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v31y2016i2d10.1007_s10878-014-9773-6.html
   My bibliography  Save this article

Modified differential evolution with self-adaptive parameters method

Author

Listed:
  • Xiangtao Li

    (Northeast Normal University)

  • Minghao Yin

    (Northeast Normal University)

Abstract

The differential evolution algorithm (DE) is a simple and effective global optimization algorithm. It has been successfully applied to solve a wide range of real-world optimization problem. In this paper, the proposed algorithm uses two mutation rules based on the rand and best individuals among the entire population. In order to balance the exploitation and exploration of the algorithm, two new rules are combined through a probability rule. Then, self-adaptive parameter setting is introduced as uniformly random numbers to enhance the diversity of the population based on the relative success number of the proposed two new parameters in a previous period. In other aspects, our algorithm has a very simple structure and thus it is easy to implement. To verify the performance of MDE, 16 benchmark functions chosen from literature are employed. The results show that the proposed MDE algorithm clearly outperforms the standard differential evolution algorithm with six different parameter settings. Compared with some evolution algorithms (ODE, OXDE, SaDE, JADE, jDE, CoDE, CLPSO, CMA-ES, GL-25, AFEP, MSAEP and ENAEP) from literature, experimental results indicate that the proposed algorithm performs better than, or at least comparable to state-of-the-art approaches from literature when considering the quality of the solution obtained.

Suggested Citation

  • Xiangtao Li & Minghao Yin, 2016. "Modified differential evolution with self-adaptive parameters method," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 546-576, February.
  • Handle: RePEc:spr:jcomop:v:31:y:2016:i:2:d:10.1007_s10878-014-9773-6
    DOI: 10.1007/s10878-014-9773-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-014-9773-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-014-9773-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia-Martinez, C. & Lozano, M. & Herrera, F. & Molina, D. & Sanchez, A.M., 2008. "Global and local real-coded genetic algorithms based on parent-centric crossover operators," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1088-1113, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shijing Ma & Xiangtao Li & Yunhe Wang, 2016. "Classification of Gene Expression Data Using Multiobjective Differential Evolution," Energies, MDPI, vol. 9(12), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    2. Wu Zhu & Jian-an Fang & Yang Tang & Wenbing Zhang & Wei Du, 2012. "Digital IIR Filters Design Using Differential Evolution Algorithm with a Controllable Probabilistic Population Size," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    3. Raghav Prasad Parouha & Pooja Verma, 2022. "An innovative hybrid algorithm for bound-unconstrained optimization problems and applications," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1273-1336, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:31:y:2016:i:2:d:10.1007_s10878-014-9773-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.