IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v27y2014i2d10.1007_s10878-012-9500-0.html
   My bibliography  Save this article

Signed Roman domination in graphs

Author

Listed:
  • H. Abdollahzadeh Ahangar

    (Babol University of Technology)

  • Michael A. Henning

    (University of Johannesburg)

  • Christian Löwenstein

    (University of Johannesburg)

  • Yancai Zhao

    (Wuxi City College of Vocational Technology)

  • Vladimir Samodivkin

    (University of Architecture Civil Engineering and Geodesy)

Abstract

In this paper we continue the study of Roman dominating functions in graphs. A signed Roman dominating function (SRDF) on a graph G=(V,E) is a function f:V→{−1,1,2} satisfying the conditions that (i) the sum of its function values over any closed neighborhood is at least one and (ii) for every vertex u for which f(u)=−1 is adjacent to at least one vertex v for which f(v)=2. The weight of a SRDF is the sum of its function values over all vertices. The signed Roman domination number of G is the minimum weight of a SRDF in G. We present various lower and upper bounds on the signed Roman domination number of a graph. Let G be a graph of order n and size m with no isolated vertex. We show that $\gamma _{\mathrm{sR}}(G) \ge\frac{3}{\sqrt{2}} \sqrt{n} - n$ and that γ sR(G)≥(3n−4m)/2. In both cases, we characterize the graphs achieving equality in these bounds. If G is a bipartite graph of order n, then we show that $\gamma_{\mathrm{sR}}(G) \ge3\sqrt{n+1} - n - 3$ , and we characterize the extremal graphs.

Suggested Citation

  • H. Abdollahzadeh Ahangar & Michael A. Henning & Christian Löwenstein & Yancai Zhao & Vladimir Samodivkin, 2014. "Signed Roman domination in graphs," Journal of Combinatorial Optimization, Springer, vol. 27(2), pages 241-255, February.
  • Handle: RePEc:spr:jcomop:v:27:y:2014:i:2:d:10.1007_s10878-012-9500-0
    DOI: 10.1007/s10878-012-9500-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-012-9500-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-012-9500-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Banerjee & Michael A. Henning & D. Pradhan, 2020. "Algorithmic results on double Roman domination in graphs," Journal of Combinatorial Optimization, Springer, vol. 39(1), pages 90-114, January.
    2. Banerjee, S. & Henning, Michael A. & Pradhan, D., 2021. "Perfect Italian domination in cographs," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    3. Hong Gao & Xing Liu & Yuanyuan Guo & Yuansheng Yang, 2022. "On Two Outer Independent Roman Domination Related Parameters in Torus Graphs," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    4. Lutz Volkmann, 2016. "Signed total Roman domination in graphs," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 855-871, October.
    5. Jia-Xiong Dan & Zhi-Bo Zhu & Xin-Kui Yang & Ru-Yi Li & Wei-Jie Zhao & Xiang-Jun Li, 2022. "The signed edge-domatic number of nearly cubic graphs," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 435-445, August.
    6. Xinyue Liu & Huiqin Jiang & Pu Wu & Zehui Shao, 2021. "Total Roman {3}-Domination: The Complexity and Linear-Time Algorithm for Trees," Mathematics, MDPI, vol. 9(3), pages 1-7, February.
    7. Guoliang Hao & Jianguo Qian, 2018. "Bounds on the domination number of a digraph," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 64-74, January.
    8. Mahsa Darkooti & Abdollah Alhevaz & Sadegh Rahimi & Hadi Rahbani, 2019. "On perfect Roman domination number in trees: complexity and bounds," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 712-720, October.
    9. H. Abdollahzadeh Ahangar & J. Amjadi & S. M. Sheikholeslami & L. Volkmann & Y. Zhao, 2016. "Signed Roman edge domination numbers in graphs," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 333-346, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:27:y:2014:i:2:d:10.1007_s10878-012-9500-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.