IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v25y2013i1d10.1007_s10878-011-9417-z.html
   My bibliography  Save this article

A 6/5-approximation algorithm for the maximum 3-cover problem

Author

Listed:
  • Ioannis Caragiannis

    (University of Patras)

  • Gianpiero Monaco

    (University of L’Aquila)

Abstract

In the maximum cover problem, we are given a collection of sets over a ground set of elements and a positive integer w, and we are asked to compute a collection of at most w sets whose union contains the maximum number of elements from the ground set. This is a fundamental combinatorial optimization problem with applications to resource allocation. We study the simplest APX-hard variant of the problem where all sets are of size at most 3 and we present a 6/5-approximation algorithm, improving the previously best known approximation guarantee. Our algorithm is based on the idea of first computing a large packing of disjoint sets of size 3 and then augmenting it by performing simple local improvements.

Suggested Citation

  • Ioannis Caragiannis & Gianpiero Monaco, 2013. "A 6/5-approximation algorithm for the maximum 3-cover problem," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 60-77, January.
  • Handle: RePEc:spr:jcomop:v:25:y:2013:i:1:d:10.1007_s10878-011-9417-z
    DOI: 10.1007/s10878-011-9417-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-011-9417-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-011-9417-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. CORNUEJOLS, Gérard & FISHER, Marshall L. & NEMHAUSER, George L., 1977. "Location of bank accounts to optimize float: An analytic study of exact and approximate algorithms," LIDAM Reprints CORE 292, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Gerard Cornuejols & Marshall L. Fisher & George L. Nemhauser, 1977. "Exceptional Paper--Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms," Management Science, INFORMS, vol. 23(8), pages 789-810, April.
    3. A.A. Ageev & M.I. Sviridenko, 2004. "Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 307-328, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jon Lee & Maxim Sviridenko & Jan Vondrák, 2010. "Submodular Maximization over Multiple Matroids via Generalized Exchange Properties," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 795-806, November.
    2. Refael Hassin & R. Ravi & F. Sibel Salman, 2017. "Multiple facility location on a network with linear reliability order of edges," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 931-955, October.
    3. Fang Lu & John J. Hasenbein & David P. Morton, 2016. "Modeling and Optimization of a Spatial Detection System," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 512-526, August.
    4. Jeffrey D. Camm & Susan K. Norman & Stephen Polasky & Andrew R. Solow, 2002. "Nature Reserve Site Selection to Maximize Expected Species Covered," Operations Research, INFORMS, vol. 50(6), pages 946-955, December.
    5. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    6. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    7. Klaus Büdenbender & Tore Grünert & Hans-Jürgen Sebastian, 2000. "A Hybrid Tabu Search/Branch-and-Bound Algorithm for the Direct Flight Network Design Problem," Transportation Science, INFORMS, vol. 34(4), pages 364-380, November.
    8. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    9. Heidari, Mehdi & Asadpour, Masoud & Faili, Hesham, 2015. "SMG: Fast scalable greedy algorithm for influence maximization in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 124-133.
    10. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    11. Alberto Ceselli & Federico Liberatore & Giovanni Righini, 2009. "A computational evaluation of a general branch-and-price framework for capacitated network location problems," Annals of Operations Research, Springer, vol. 167(1), pages 209-251, March.
    12. Kurt Jörnsten & Andreas Klose, 2016. "An improved Lagrangian relaxation and dual ascent approach to facility location problems," Computational Management Science, Springer, vol. 13(3), pages 317-348, July.
    13. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    14. Righini, Giovanni, 1995. "A double annealing algorithm for discrete location/allocation problems," European Journal of Operational Research, Elsevier, vol. 86(3), pages 452-468, November.
    15. Pierre Hansen & Jack Brimberg & Dragan Urošević & Nenad Mladenović, 2007. "Primal-Dual Variable Neighborhood Search for the Simple Plant-Location Problem," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 552-564, November.
    16. Zohreh Hosseini Nodeh & Ali Babapour Azar & Rashed Khanjani Shiraz & Salman Khodayifar & Panos M. Pardalos, 2020. "Joint chance constrained shortest path problem with Copula theory," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 110-140, July.
    17. Rolland, Erik & Schilling, David A. & Current, John R., 1997. "An efficient tabu search procedure for the p-Median Problem," European Journal of Operational Research, Elsevier, vol. 96(2), pages 329-342, January.
    18. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    19. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
    20. Joshua Q. Hale & Enlu Zhou & Jiming Peng, 2017. "A Lagrangian search method for the P-median problem," Journal of Global Optimization, Springer, vol. 69(1), pages 137-156, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:25:y:2013:i:1:d:10.1007_s10878-011-9417-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.