IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v20y2010i2d10.1007_s10878-008-9191-8.html
   My bibliography  Save this article

A hybrid beam search looking-ahead algorithm for the circular packing problem

Author

Listed:
  • Hakim Akeb

    (Institut Supérieur du Commerce)

  • Mhand Hifi

    (Université de Picardie Jules
    Université Paris 1)

Abstract

In this paper, we study the circular packing problem. Its objective is to pack a set of n circular pieces into a rectangular plate R of fixed dimensions L×W. Each piece’s type i, i=1,…,m, is characterized by its radius r i and its demand b i . The objective is to determine the packing pattern corresponding to the minimum unused area of R for the circular pieces placed. This problem is solved by using a hybrid algorithm that adopts beam search and a looking-ahead strategy. A node at a level ℓ of the beam-search tree contains a partial solution corresponding to the circles already placed inside R. Each node is then evaluated using a looking-ahead strategy, based on the minimum local-distance heuristic, by computing the corresponding complete solution. The nodes leading to the best solutions at level ℓ are then chosen for branching. A multi-start strategy is also considered in order to diversify the search space. The computational results show, on a set of benchmark instances, the effectiveness of the proposed algorithm.

Suggested Citation

  • Hakim Akeb & Mhand Hifi, 2010. "A hybrid beam search looking-ahead algorithm for the circular packing problem," Journal of Combinatorial Optimization, Springer, vol. 20(2), pages 101-130, August.
  • Handle: RePEc:spr:jcomop:v:20:y:2010:i:2:d:10.1007_s10878-008-9191-8
    DOI: 10.1007/s10878-008-9191-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-008-9191-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-008-9191-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hifi, Mhand & Paschos, Vangelis Th. & Zissimopoulos, Vassilis, 2004. "A simulated annealing approach for the circular cutting problem," European Journal of Operational Research, Elsevier, vol. 159(2), pages 430-448, December.
    2. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    3. George, John A. & George, Jennifer M. & Lamar, Bruce W., 1995. "Packing different-sized circles into a rectangular container," European Journal of Operational Research, Elsevier, vol. 84(3), pages 693-712, August.
    4. Birgin, E. G. & Martinez, J. M. & Ronconi, D. P., 2005. "Optimizing the packing of cylinders into a rectangular container: A nonlinear approach," European Journal of Operational Research, Elsevier, vol. 160(1), pages 19-33, January.
    5. Duanbing Chen & Wenqi Huang, 2007. "A New Heuristic Algorithm For Constrained Rectangle-Packing Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 463-478.
    6. Erhan Baltacioglu & James T. Moore & Raymond R. Hill Jr., 2006. "The distributor's three-dimensional pallet-packing problem: a human intelligence-based heuristic approach," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 1(3), pages 249-266.
    7. R. Ravi & Amitabh Sinha, 2006. "Approximation Algorithms for Problems Combining Facility Location and Network Design," Operations Research, INFORMS, vol. 54(1), pages 73-81, February.
    8. Edmund Burke & Robert Hellier & Graham Kendall & Glenn Whitwell, 2006. "A New Bottom-Left-Fill Heuristic Algorithm for the Two-Dimensional Irregular Packing Problem," Operations Research, INFORMS, vol. 54(3), pages 587-601, June.
    9. Syam Menon & Linus Schrage, 2002. "Order Allocation for Stock Cutting in the Paper Industry," Operations Research, INFORMS, vol. 50(2), pages 324-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Zhizhong & Yu, Xinguo & He, Kun & Huang, Wenqi & Fu, Zhanghua, 2016. "Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 250(2), pages 615-627.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Zhanghua & Huang, Wenqi & Lü, Zhipeng, 2013. "Iterated tabu search for the circular open dimension problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 236-243.
    2. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    3. Akang Wang & Christopher L. Hanselman & Chrysanthos E. Gounaris, 2018. "A customized branch-and-bound approach for irregular shape nesting," Journal of Global Optimization, Springer, vol. 71(4), pages 935-955, August.
    4. W Q Huang & Y Li & H Akeb & C M Li, 2005. "Greedy algorithms for packing unequal circles into a rectangular container," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 539-548, May.
    5. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    6. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    7. T. Kubach & A. Bortfeldt & H. Gehring, 2009. "Parallel greedy algorithms for packing unequal circles into a strip or a rectangle," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(4), pages 461-477, December.
    8. Hifi, M. & M'Hallah, R., 2007. "A dynamic adaptive local search algorithm for the circular packing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1280-1294, December.
    9. Lorena Pradenas & Marco Fuentes & Víctor Parada, 2020. "Optimizing waste storage areas in health care centers," Annals of Operations Research, Springer, vol. 295(1), pages 503-516, December.
    10. J A Bennell & J F Oliveira, 2009. "A tutorial in irregular shape packing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 93-105, May.
    11. Ronald E. Giachetti & Jean Carlo Sanchez, 2009. "A model to design recreational boat mooring fields," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(2), pages 158-174, March.
    12. Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
    13. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
    14. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.
    15. Alvarez-Valdes, R. & Martinez, A. & Tamarit, J.M., 2013. "A branch & bound algorithm for cutting and packing irregularly shaped pieces," International Journal of Production Economics, Elsevier, vol. 145(2), pages 463-477.
    16. Chehrazad, Sahar & Roose, Dirk & Wauters, Tony, 2022. "A fast and scalable bottom-left-fill algorithm to solve nesting problems using a semi-discrete representation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 809-826.
    17. Reinertsen, Harald & Vossen, Thomas W.M., 2010. "The one-dimensional cutting stock problem with due dates," European Journal of Operational Research, Elsevier, vol. 201(3), pages 701-711, March.
    18. Yaohua He & Yong Wu, 2013. "Packing non-identical circles within a rectangle with open length," Journal of Global Optimization, Springer, vol. 56(3), pages 1187-1215, July.
    19. Defu Zhang & Lijun Wei & Stephen C. H. Leung & Qingshan Chen, 2013. "A Binary Search Heuristic Algorithm Based on Randomized Local Search for the Rectangular Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 332-345, May.
    20. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:20:y:2010:i:2:d:10.1007_s10878-008-9191-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.