IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v39y2022i2d10.1007_s00357-021-09408-2.html
   My bibliography  Save this article

Supervised Classification for Link Prediction in Facebook Ego Networks With Anonymized Profile Information

Author

Listed:
  • Riccardo Giubilei

    (Sapienza University of Rome
    Luiss Guido Carli)

  • Pierpaolo Brutti

    (Sapienza University of Rome)

Abstract

Social networks are very dynamic objects where nodes and links are continuously added or removed. Hence, an important but challenging task is link prediction, that is, to predict the likelihood of a future association between any two nodes. We use a classification approach to perform link prediction on data retrieved from Facebook in the typical form of ego networks. In addition to the more traditional topological features, we also consider the attributes of the nodes—i.e., users’ publicly available profile information—to fully assess the similarity between nodes. We propose two new attribute-based features, validating their predictive power through an extensive comparison with natural competitors from the literature. Finally, one of the proposed features is selected when building a state-of-the-art procedure for link prediction that achieves an average AUROC of 96.59% over 85 test ego networks. Valuable insights on the interpretation of the results in the specific context of friendship recommendation in Facebook are also provided.

Suggested Citation

  • Riccardo Giubilei & Pierpaolo Brutti, 2022. "Supervised Classification for Link Prediction in Facebook Ego Networks With Anonymized Profile Information," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 302-325, July.
  • Handle: RePEc:spr:jclass:v:39:y:2022:i:2:d:10.1007_s00357-021-09408-2
    DOI: 10.1007/s00357-021-09408-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-021-09408-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-021-09408-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    2. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van-Vang Le & Toai Kim Tran & Bich-Ngan T. Nguyen & Quoc-Dung Nguyen & Vaclav Snasel, 2022. "Network Alignment across Social Networks Using Multiple Embedding Techniques," Mathematics, MDPI, vol. 10(21), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    2. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    4. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    5. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    6. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    7. Yichi Zhang & Zhiliang Dong & Sen Liu & Peixiang Jiang & Cuizhi Zhang & Chao Ding, 2021. "Forecast of International Trade of Lithium Carbonate Products in Importing Countries and Small-Scale Exporting Countries," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    8. Liu, Jin-Hu & Zhu, Yu-Xiao & Zhou, Tao, 2016. "Improving personalized link prediction by hybrid diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 199-207.
    9. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    10. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    11. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    12. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    13. Karimi, Fariba & Ramenzoni, Verónica C. & Holme, Petter, 2014. "Structural differences between open and direct communication in an online community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 263-273.
    14. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    15. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    16. Xiaoji Wan & Fen Chen & Hailin Li & Weibin Lin, 2022. "Potentially Related Commodity Discovery Based on Link Prediction," Mathematics, MDPI, vol. 10(19), pages 1-27, October.
    17. Víctor Martínez & Fernando Berzal & Juan-Carlos Cubero, 2019. "NOESIS: A Framework for Complex Network Data Analysis," Complexity, Hindawi, vol. 2019, pages 1-14, October.
    18. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    19. Zhu, Zhen & Morrison, Greg & Puliga, Michelangelo & Chessa, Alessandro & Riccaboni, Massimo, 2018. "The similarity of global value chains: A network-based measure," Network Science, Cambridge University Press, vol. 6(4), pages 607-632, December.
    20. Najari, Shaghayegh & Salehi, Mostafa & Ranjbar, Vahid & Jalili, Mahdi, 2019. "Link prediction in multiplex networks based on interlayer similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:39:y:2022:i:2:d:10.1007_s00357-021-09408-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.