IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v38y2021i1d10.1007_s00357-019-09353-1.html
   My bibliography  Save this article

Modified Subspace Constrained Mean Shift Algorithm

Author

Listed:
  • Youness Aliyari Ghassabeh

    (University of Toronto)

  • Frank Rudzicz

    (University of Toronto
    Li Ka Shing Knowledge Institute, St Michael’s Hospital
    Surgical Safety Technologies Inc
    Vector Institute for Artificial Intelligence)

Abstract

A subspace constrained mean shift (SCMS) algorithm is a non-parametric iterative technique to estimate principal curves. Principal curves, as a nonlinear generalization of principal components analysis (PCA), are smooth curves (or surfaces) that pass through the middle of a data set and provide a compact low-dimensional representation of data. The SCMS algorithm combines the mean shift (MS) algorithm with a projection step to estimate principal curves and surfaces. The MS algorithm is a simple iterative method for locating modes of an unknown probability density function (pdf) obtained via a kernel density estimate. Modes of a pdf can be interpreted as zero-dimensional principal curves. These modes also can be used for clustering the input data. The SCMS algorithm generalizes the MS algorithm to estimate higher order principal curves and surfaces. Although both algorithms have been widely used in many real-world applications, their convergence for widely used kernels (e.g., Gaussian kernel) has not been sown yet. In this paper, we first introduce a modified version of the MS algorithm and then combine it with different variations of the SCMS algorithm to estimate the underlying low-dimensional principal curve, embedded in a high-dimensional space. The different variations of the SCMS algorithm are obtained via modification of the projection step in the original SCMS algorithm. We show that the modification of the MS algorithm guarantees its convergence and also implies the convergence of different variations of the SCMS algorithm. The performance and effectiveness of the proposed modified versions to successfully estimate an underlying principal curve was shown through simulations using the synthetic data.

Suggested Citation

  • Youness Aliyari Ghassabeh & Frank Rudzicz, 2021. "Modified Subspace Constrained Mean Shift Algorithm," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 27-43, April.
  • Handle: RePEc:spr:jclass:v:38:y:2021:i:1:d:10.1007_s00357-019-09353-1
    DOI: 10.1007/s00357-019-09353-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-019-09353-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-019-09353-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delicado, Pedro, 2001. "Another Look at Principal Curves and Surfaces," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 84-116, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pulkkinen, Seppo, 2015. "Ridge-based method for finding curvilinear structures from noisy data," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 89-109.
    2. Pedro Delicado & Mario Huerta, 2003. "Principal Curves of Oriented Points: theoretical and computational improvements," Computational Statistics, Springer, vol. 18(2), pages 293-315, July.
    3. Pedro Delicado, 1998. "Statistics in archaeology: New directions," Economics Working Papers 310, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Cholaquidis, Alejandro & Fraiman, Ricardo & Moreno, Leonardo, 2022. "Level set and density estimation on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    6. Serge Iovleff, 2015. "Probabilistic auto-associative models and semi-linear PCA," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 267-286, September.
    7. Girard, Stéphane & Iovleff, Serge, 2005. "Auto-associative models and generalized principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 21-39, March.
    8. Salinelli, Ernesto, 2009. "Nonlinear principal components, II: Characterization of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 652-660, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:38:y:2021:i:1:d:10.1007_s00357-019-09353-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.