IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v36y2019i3d10.1007_s00357-019-9312-3.html
   My bibliography  Save this article

MDCGen: Multidimensional Dataset Generator for Clustering

Author

Listed:
  • Félix Iglesias

    (TU Wien)

  • Tanja Zseby

    (TU Wien)

  • Daniel Ferreira

    (TU Wien)

  • Arthur Zimek

    (Department of Mathematics and Computer Science (IMADA))

Abstract

We present a tool for generating multidimensional synthetic datasets for testing, evaluating, and benchmarking unsupervised classification algorithms. Our proposal fills a gap observed in previous approaches with regard to underlying distributions for the creation of multidimensional clusters. As a novelty, normal and non-normal distributions can be combined for either independently defining values feature by feature (i.e., multivariate distributions) or establishing overall intra-cluster distances. Being highly flexible, parameterizable, and randomizable, MDCGen also implements classic pursued features: (a) customization of cluster-separation, (b) overlap control, (c) addition of outliers and noise, (d) definition of correlated variables and rotations, (e) flexibility for allowing or avoiding isolation constraints per dimension, (f) creation of subspace clusters and subspace outliers, (g) importing arbitrary distributions for the value generation, and (h) dataset quality evaluations, among others. As a result, the proposed tool offers an improved range of potential datasets to perform a more comprehensive testing of clustering algorithms.

Suggested Citation

  • Félix Iglesias & Tanja Zseby & Daniel Ferreira & Arthur Zimek, 2019. "MDCGen: Multidimensional Dataset Generator for Clustering," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 599-618, October.
  • Handle: RePEc:spr:jclass:v:36:y:2019:i:3:d:10.1007_s00357-019-9312-3
    DOI: 10.1007/s00357-019-9312-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-019-9312-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-019-9312-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Douglas Steinley & Robert Henson, 2005. "OCLUS: An Analytic Method for Generating Clusters with Known Overlap," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 221-250, September.
    2. Weiliang Qiu & Harry Joe, 2006. "Generation of Random Clusters with Specified Degree of Separation," Journal of Classification, Springer;The Classification Society, vol. 23(2), pages 315-334, September.
    3. Jerzy Korzeniewski, 2013. "Empirical Evaluation of OCLUS and GenRandomClust Algorithms of Generating Cluster Structures," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(3), pages 487-494, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas L. Steinley, 2019. "Editorial: Journal of Classification Vol. 36-3," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 393-396, October.
    2. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    3. Marco Riani & Andrea Cerioli & Domenico Perrotta & Francesca Torti, 2015. "Simulating mixtures of multivariate data with fixed cluster overlap in FSDA library," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 461-481, December.
    4. Jerzy Korzeniewski, 2013. "Empirical Evaluation of OCLUS and GenRandomClust Algorithms of Generating Cluster Structures," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(3), pages 487-494, September.
    5. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    6. Douglas L. Steinley & M. J. Brusco, 2019. "Using an Iterative Reallocation Partitioning Algorithm to Verify Test Multidimensionality," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 397-413, October.
    7. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    8. Michio Yamamoto, 2012. "Clustering of functional data in a low-dimensional subspace," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 219-247, October.
    9. Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
    10. Melnykov, Volodymyr & Chen, Wei-Chen & Maitra, Ranjan, 2012. "MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i12).
    11. Kaczynska, S. & Marion, R. & Von Sachs, R., 2020. "Comparison of Cluster Validity Indices and Decision Rules for Different Degrees of Cluster Separation," LIDAM Discussion Papers ISBA 2020009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
    13. Christian Hennig, 2010. "Methods for merging Gaussian mixture components," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(1), pages 3-34, April.
    14. Floriello, Davide & Vitelli, Valeria, 2017. "Sparse clustering of functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 1-18.
    15. Monica Borunda & Adrián Ramírez & Raul Garduno & Carlos García-Beltrán & Rito Mijarez, 2023. "Enhancing Long-Term Wind Power Forecasting by Using an Intelligent Statistical Treatment for Wind Resource Data," Energies, MDPI, vol. 16(23), pages 1-34, December.
    16. Morris, Katherine & McNicholas, Paul D., 2016. "Clustering, classification, discriminant analysis, and dimension reduction via generalized hyperbolic mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 133-150.
    17. Dario Bruzzese & Domenico Vistocco, 2015. "DESPOTA: DEndrogram Slicing through a PemutatiOn Test Approach," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 285-304, July.
    18. Yuhong Wei & Paul McNicholas, 2015. "Mixture model averaging for clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(2), pages 197-217, June.
    19. Mark Chiang & Boris Mirkin, 2010. "Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 3-40, March.
    20. Timmerman, Marieke E. & Ceulemans, Eva & Kiers, Henk A.L. & Vichi, Maurizio, 2010. "Factorial and reduced K-means reconsidered," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1858-1871, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:36:y:2019:i:3:d:10.1007_s00357-019-9312-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.