Modeling Community Structure and Topics in Dynamic Text Networks
Author
Abstract
Suggested Citation
DOI: 10.1007/s00357-018-9289-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
- Pavel N. Krivitsky & Mark S. Handcock, 2014. "A separable model for dynamic networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 29-46, January.
- Hunter, David R. & Goodreau, Steven M. & Handcock, Mark S., 2008. "Goodness of Fit of Social Network Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 248-258, March.
- W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jacopo A. Baggio, 2021. "Knowledge generation via social-knowledge network co-evolution: 30 years (1990–2019) of adaptation, mitigation and transformation related to climate change," Climatic Change, Springer, vol. 167(1), pages 1-16, July.
- Anton Oleinik, 2024. "A Bayesian index of association: comparison with other measures and performance," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 277-305, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Teague R. Henry & Kathleen M. Gates & Mitchell J. Prinstein & Douglas Steinley, 2020. "Modeling Heterogeneous Peer Assortment Effects Using Finite Mixture Exponential Random Graph Models," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 8-34, March.
- Federica Bianchi & Francesco Bartolucci & Stefano Peluso & Antonietta Mira, 2020. "Longitudinal networks of dyadic relationships using latent trajectories: evidence from the European interbank market," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 711-739, August.
- Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
- De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.
- Anna Malinovskaya & Philipp Otto, 2021. "Online network monitoring," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1337-1364, December.
- Per Block & Christoph Stadtfeld & Tom A. B. Snijders, 2019. "Forms of Dependence: Comparing SAOMs and ERGMs From Basic Principles," Sociological Methods & Research, , vol. 48(1), pages 202-239, February.
- Kei, Yik Lun & Chen, Yanzhen & Madrid Padilla, Oscar Hernan, 2023. "A partially separable model for dynamic valued networks," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Joshua Daniel Loyal & Yuguo Chen, 2020. "Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic," International Statistical Review, International Statistical Institute, vol. 88(2), pages 419-440, August.
- Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
- Gaonkar, Shweta & Mele, Angelo, 2023.
"A model of inter-organizational network formation,"
Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 82-104.
- Gaonkar, Shweta & Mele, Angelo, 2021. "A model of inter-organizational network formation," SocArXiv ysbmq, Center for Open Science.
- Shweta Gaonkar & Angelo Mele, 2021. "A model of inter-organizational network formation," Papers 2105.00458, arXiv.org.
- Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020.
"Specification and estimation of network formation and network interaction models with the exponential probability distribution,"
Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
- Hsieh, Chih-Sheng & Lee, Lung fei, 2017. "Specification and Estimation of Network Formation and Network Interaction Models with the Exponential Probability Distribution," MPRA Paper 60726, University Library of Munich, Germany.
- Wong, Ling Heng & Pattison, Philippa & Robins, Garry, 2006. "A spatial model for social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 99-120.
- Tom Broekel & Marcel Bednarz, 2018.
"Disentangling link formation and dissolution in spatial networks: An Application of a Two-Mode STERGM to a Project-Based R&D Network in the German Biotechnology Industry,"
Networks and Spatial Economics, Springer, vol. 18(3), pages 677-704, September.
- Tom Broekel & Marcel Bednarz, 2018. "Disentangling link formation and dissolution in spatial networks: An application of a two-mode STERGM to a project-based R&D network in the German Biotechnology industry," Papers in Evolutionary Economic Geography (PEEG) 1837, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Oct 2018.
- Sayan Chakraborty & Arnab Bhattacharjee & Taps Maiti, 2021. "Structural Factorization of Latent Adjacency Matrix, with an application to Auto Industry Networks," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 185-206, November.
- Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020.
"Dynamic interbank network analysis using latent space models,"
Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
- Fernando Linardi & Cees (C.G.H.) Diks & Marco (M.J.) van der Leij & Iuri Lazier, 2017. "Dynamic Interbank Network Analysis Using Latent Space Models," Tinbergen Institute Discussion Papers 17-101/II, Tinbergen Institute.
- Fernando Linardi & Cees Diks & Marco van der Leij & Iuri Lazier, 2018. "Dynamic Interbank Network Analysis Using Latent Space Models," Working Papers Series 487, Central Bank of Brazil, Research Department.
- Tracy M. Sweet, 2019. "Modeling Social Networks as Mediators: A Mixed Membership Stochastic Blockmodel for Mediation," Journal of Educational and Behavioral Statistics, , vol. 44(2), pages 210-240, April.
- Jing Wang & Anocha Aribarg & Yves F. Atchadé, 2013. "Modeling Choice Interdependence in a Social Network," Marketing Science, INFORMS, vol. 32(6), pages 977-997, November.
- Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
- Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
More about this item
Keywords
Networks; Natural language processing; Topic modeling; Political blogs; Community detection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:36:y:2019:i:2:d:10.1007_s00357-018-9289-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.