A Reliable Small Sample Classification Algorithm by Elman Neural Network Based on PLS and GA
Author
Abstract
Suggested Citation
DOI: 10.1007/s00357-018-9288-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Michio Yamamoto & Heungsun Hwang, 2017. "Dimension-Reduced Clustering of Functional Data via Subspace Separation," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 294-326, July.
- Zhan Shu & Robert Henson & John Willse, 2013. "Using Neural Network Analysis to Define Methods of DINA Model Estimation for Small Sample Sizes," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 173-194, July.
- Herbert K.H. Lee, 2007. "Default Priors for Neural Network Classification," Journal of Classification, Springer;The Classification Society, vol. 24(1), pages 53-70, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Virta, Joni & Li, Bing & Nordhausen, Klaus & Oja, Hannu, 2020. "Independent component analysis for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
- Amandine Schmutz & Julien Jacques & Charles Bouveyron & Laurence Chèze & Pauline Martin, 2020. "Clustering multivariate functional data in group-specific functional subspaces," Computational Statistics, Springer, vol. 35(3), pages 1101-1131, September.
- Matthieu Marbac & Mohammed Sedki & Tienne Patin, 2020. "Variable Selection for Mixed Data Clustering: Application in Human Population Genomics," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 124-142, April.
- David Arthur & Hua-Hua Chang, 2024. "DINA-BAG: A Bagging Algorithm for DINA Model Parameter Estimation in Small Samples," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 342-367, June.
More about this item
Keywords
Small sample; Elman neural network; Partial least squares; Genetic algorithm; PLS-GA-Elman algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:36:y:2019:i:2:d:10.1007_s00357-018-9288-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.