IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v32y2015i1p63-84.html
   My bibliography  Save this article

Outlier Identification in Model-Based Cluster Analysis

Author

Listed:
  • Katie Evans
  • Tanzy Love
  • Sally Thurston

Abstract

In model-based clustering based on normal-mixture models, a few outlying observations can influence the cluster structure and number. This paper develops a method to identify these, however it does not attempt to identify clusters amidst a large field of noisy observations. We identify outliers as those observations in a cluster with minimal membership proportion or for which the cluster-specific variance with and without the observation is very different. Results from a simulation study demonstrate the ability of our method to detect true outliers without falsely identifying many non-outliers and improved performance over other approaches, under most scenarios. We use the contributed R package MCLUST for model-based clustering, but propose a modified prior for the cluster-specific variance which avoids degeneracies in estimation procedures. We also compare results from our outlier method to published results on National Hockey League data. Copyright Classification Society of North America 2015

Suggested Citation

  • Katie Evans & Tanzy Love & Sally Thurston, 2015. "Outlier Identification in Model-Based Cluster Analysis," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 63-84, April.
  • Handle: RePEc:spr:jclass:v:32:y:2015:i:1:p:63-84
    DOI: 10.1007/s00357-015-9171-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-015-9171-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-015-9171-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Fraley & Adrian E. Raftery, 1999. "MCLUST: Software for Model-Based Cluster Analysis," Journal of Classification, Springer;The Classification Society, vol. 16(2), pages 297-306, July.
    2. Chris Fraley & Adrian E. Raftery, 2007. "Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 24(2), pages 155-181, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douglas L. Steinley, 2016. "Editorial," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 327-330, October.
    2. Andrzej Chmielowiec, 2021. "Algorithm for error-free determination of the variance of all contiguous subsequences and fixed-length contiguous subsequences for a sequence of industrial measurement data," Computational Statistics, Springer, vol. 36(4), pages 2813-2840, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cinzia Viroli, 2010. "Dimensionally Reduced Model-Based Clustering Through Mixtures of Factor Mixture Analyzers," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 363-388, November.
    2. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    3. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    4. Sucharitha, Rahul Srinivas & Lee, Seokcheon, 2022. "GMM clustering for in-depth food accessibility pattern exploration and prediction model of food demand behavior," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    5. Ugo Fratesi & Giovanni Perucca, 2018. "Territorial capital and the resilience of European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 241-264, March.
    6. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    7. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    8. Patricia Gilholm & Kerrie Mengersen & Helen Thompson, 2020. "Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.
    9. Seo, Byungtae & Kim, Daeyoung, 2012. "Root selection in normal mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2454-2470.
    10. repec:cte:wsrepe:ws1450804 is not listed on IDEAS
    11. De la Cruz-Mesia, Rolando & Quintana, Fernando A. & Marshall, Guillermo, 2008. "Model-based clustering for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1441-1457, January.
    12. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    13. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    14. Karakos, Damianos & Khudanpur, Sanjeev & Marchette, David J. & Papamarcou, Adrian & Priebe, Carey E., 2008. "On the minimization of concave information functionals for unsupervised classification via decision trees," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 975-984, June.
    15. Oliver M Crook & Claire M Mulvey & Paul D W Kirk & Kathryn S Lilley & Laurent Gatto, 2018. "A Bayesian mixture modelling approach for spatial proteomics," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-29, November.
    16. Chi, Eric C. & Lange, Kenneth, 2014. "Stable estimation of a covariance matrix guided by nuclear norm penalties," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 117-128.
    17. Dolnicar, Sara & Grün, Bettina & Leisch, Friedrich, 2016. "Increasing sample size compensates for data problems in segmentation studies," Journal of Business Research, Elsevier, vol. 69(2), pages 992-999.
    18. Surajit Ray & Bruce G. Lindsay, 2008. "Model selection in high dimensions: a quadratic‐risk‐based approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 95-118, February.
    19. Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2022. "Gaussian mixture model with an extended ultrametric covariance structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 399-427, June.
    20. ?uksza Marta & Kluge Bogus?aw & Ostrowski Jerzy & Karczmarski Jakub & Gambin Anna, 2009. "Two-Stage Model-Based Clustering for Liquid Chromatography Mass Spectrometry Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-36, February.
    21. Ji, Yuan & Tsui, Kam-Wah & Kim, KyungMann, 2006. "A two-stage empirical Bayes method for identifying differentially expressed genes," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3592-3604, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:32:y:2015:i:1:p:63-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.