IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v91y2021i9d10.1007_s11573-021-01070-9.html
   My bibliography  Save this article

Agent-based modeling in social sciences

Author

Listed:
  • Kai Fischbach

    (University of Bamberg)

  • Johannes Marx

    (University of Bamberg)

  • Tim Weitzel

    (University of Bamberg)

Abstract

No abstract is available for this item.

Suggested Citation

  • Kai Fischbach & Johannes Marx & Tim Weitzel, 2021. "Agent-based modeling in social sciences," Journal of Business Economics, Springer, vol. 91(9), pages 1263-1270, November.
  • Handle: RePEc:spr:jbecon:v:91:y:2021:i:9:d:10.1007_s11573-021-01070-9
    DOI: 10.1007/s11573-021-01070-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-021-01070-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-021-01070-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Brian Arthur, 1994. "Inductive Reasoning, Bounded Rationality and the Bar Problem," Working Papers 94-03-014, Santa Fe Institute.
    2. Grüne-Yanoff, Till & Verreault-Julien, Philippe, 2021. "How-possibly explanations in economics: anything goes?," LSE Research Online Documents on Economics 108622, London School of Economics and Political Science, LSE Library.
    3. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    4. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    5. Schelling, Thomas C, 1969. "Models of Segregation," American Economic Review, American Economic Association, vol. 59(2), pages 488-493, May.
    6. Christian Stummer & Lars Lüpke & Markus Günther, 2021. "Beaming market simulation to the future by combining agent-based modeling with scenario analysis," Journal of Business Economics, Springer, vol. 91(9), pages 1469-1497, November.
    7. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    8. Jan Schulz & Daniel M. Mayerhoffer, 2021. "Equal chances, unequal outcomes? Network-based evolutionary learning and the industrial dynamics of superstar firms," Journal of Business Economics, Springer, vol. 91(9), pages 1357-1385, November.
    9. Kathrin Eismann, 2021. "Diffusion and persistence of false rumors in social media networks: implications of searchability on rumor self-correction on Twitter," Journal of Business Economics, Springer, vol. 91(9), pages 1299-1329, November.
    10. Benjamin Cabrera & Björn Ross & Daniel Röchert & Felix Brünker & Stefan Stieglitz, 2021. "The influence of community structure on opinion expression: an agent-based model," Journal of Business Economics, Springer, vol. 91(9), pages 1331-1355, November.
    11. Arpan Jani, 2021. "An agent-based model of repeated decision making under risk: modeling the role of alternate reference points and risk behavior on long-run outcomes," Journal of Business Economics, Springer, vol. 91(9), pages 1271-1297, November.
    12. Till Grüne-Yanoff & Philippe Verreault-Julien, 2021. "How-possibly explanations in economics: anything goes?," Journal of Economic Methodology, Taylor & Francis Journals, vol. 28(1), pages 114-123, January.
    13. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furtado, Bernardo Alves & Eberhardt, Isaque Daniel Rocha, 2015. "Modelo espacial simples da economia: uma proposta teórico-metodológica [A simple spatial economic model: a proposal]," MPRA Paper 67005, University Library of Munich, Germany.
    2. Zakaria Babutsidze, 2012. "Consumer Learning through Interaction: Effects on Aggregate Outcomes," Chapters, in: Guido Buenstorf (ed.), Evolution, Organization and Economic Behavior, chapter 4, Edward Elgar Publishing.
    3. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046, September.
    4. Petra Ahrweiler, 2017. "Agent-based simulation for science, technology, and innovation policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 391-415, January.
    5. Bernardo Alves Furtado & Isaque Daniel Rocha Eberhardt, 2016. "A Simple Agent-Based Spatial Model of the Economy: Tools for Policy," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(4), pages 1-12.
    6. Andrew W. Bausch, 2014. "Evolving intergroup cooperation," Computational and Mathematical Organization Theory, Springer, vol. 20(4), pages 369-393, December.
    7. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    8. Marc Deissenroth & Martin Klein & Kristina Nienhaus & Matthias Reeg, 2017. "Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration," Complexity, Hindawi, vol. 2017, pages 1-24, December.
    9. Hanappi, Hardy, 2017. "Agent-based modelling. History, essence, future," MPRA Paper 79331, University Library of Munich, Germany.
    10. Uri Wilensky & William Rand, 2007. "Making Models Match: Replicating an Agent-Based Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-2.
    11. Nan Lu, 2018. "La modélisation de l’indice CAC 40 avec un modèle basé agent," Erudite Ph.D Dissertations, Erudite, number ph18-02 edited by François Legendre.
    12. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    13. Aggio, Gustavo de Oliveira, 2011. "Emergência de convenções sociais - Uma análise a partir da simulação de interações descentralizadas caracterizadas pela disposição a imitação de comportamento," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 65(1), March.
    14. Aleksejus Kononovicius, 2017. "Empirical Analysis and Agent-Based Modeling of the Lithuanian Parliamentary Elections," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    15. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    16. Edmund Chattoe-Brown, 1998. "Just How (Un)realistic Are Evolutionary Algorithms As Representations of Social Processes?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 1(3), pages 1-2.
    17. Jean Philippe Bouchaud & Matteo Marsili & Jean-Pierre Nadal, 2023. "Application of spin glass ideas in social sciences, economics and finance," Post-Print hal-04145594, HAL.
    18. Peter Revay & Claudio Cioffi-Revilla, 2018. "Survey of evolutionary computation methods in social agent-based modeling studies," Journal of Computational Social Science, Springer, vol. 1(1), pages 115-146, January.
    19. Jean-Philippe Bouchaud & Matteo Marsili & Jean-Pierre Nadal, 2023. "Application of spin glass ideas in social sciences, economics and finance," Papers 2306.16165, arXiv.org.
    20. Jan Schulz & Daniel M. Mayerhoffer, 2021. "Equal chances, unequal outcomes? Network-based evolutionary learning and the industrial dynamics of superstar firms," Journal of Business Economics, Springer, vol. 91(9), pages 1357-1385, November.

    More about this item

    Keywords

    C6; C63;

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:91:y:2021:i:9:d:10.1007_s11573-021-01070-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.