IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v26y2021i4d10.1007_s13253-021-00455-1.html
   My bibliography  Save this article

Classification of Events Using Local Pair Correlation Functions for Spatial Point Patterns

Author

Listed:
  • Jonatan A. González

    (University Jaume I)

  • Francisco J. Rodríguez-Cortés

    (Universidad Nacional de Colombia)

  • Elvira Romano

    (Universitá della Campania “Luigi Vanvitelli”)

  • Jorge Mateu

    (University Jaume I)

Abstract

Spatial point pattern analysis usually concerns identifying features in an observation window where there is also noise. This identification traditionally begins with studying the second-order properties of the point pattern, and it may be done locally by using local second-order characteristics (LISA). Some properties of this local structure solve the problem of classification into feature and clutter points. This paper proposes an estimator for local pair correlation LISA functions, discusses some of its properties and considers a particular distance to measure dissimilarities. Two classification procedures to separate feature from clutter points are described. One of them adopts multidimensional scaling and support vector machines, and the other employs bagged clustering. Simulations demonstrate the performance of the method, and it is applied to a dataset concerning earthquakes in a seismic nest located in Colombia.

Suggested Citation

  • Jonatan A. González & Francisco J. Rodríguez-Cortés & Elvira Romano & Jorge Mateu, 2021. "Classification of Events Using Local Pair Correlation Functions for Spatial Point Patterns," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 538-559, December.
  • Handle: RePEc:spr:jagbes:v:26:y:2021:i:4:d:10.1007_s13253-021-00455-1
    DOI: 10.1007/s13253-021-00455-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-021-00455-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-021-00455-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    2. Hennig, Christian, 2007. "Cluster-wise assessment of cluster stability," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 258-271, September.
    3. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    4. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    5. Luc Anselin & Sergio J. Rey, 2010. "Perspectives on Spatial Data Analysis," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 1-20, Springer.
    6. Dietrich Stoyan & Helga Stoyan, 2000. "Improving Ratio Estimators of Second Order Point Process Characteristics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 641-656, December.
    7. Arthur Getis & Janet Franklin, 2010. "Second-Order Neighborhood Analysis of Mapped Point Patterns," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 93-100, Springer.
    8. Yongtao Guan, 2007. "A Composite Likelihood Cross‐validation Approach in Selecting Bandwidth for the Estimation of the Pair Correlation Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 336-346, June.
    9. Ka Yiu Wong & Dietrich Stoyan, 2021. "Poles of pair correlation functions: When they are real?," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 425-440, April.
    10. Arthur Getis & J. Keith Ord, 2010. "The Analysis of Spatial Association by Use of Distance Statistics," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 127-145, Springer.
    11. de Leeuw, Jan & Mair, Patrick, 2009. "Multidimensional Scaling Using Majorization: SMACOF in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Eckardt & Jorge Mateu, 2021. "Second-order and local characteristics of network intensity functions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 318-340, June.
    2. Funk, Patrick & Davis, Alex & Vaishnav, Parth & Dewitt, Barry & Fuchs, Erica, 2020. "Individual inconsistency and aggregate rationality: Overcoming inconsistencies in expert judgment at the technical frontier," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    3. Eric Marcon & Florence Puech, 2012. "A typology of distance-based measures of spatial concentration," Working Papers halshs-00679993, HAL.
    4. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    5. Michael Manton & Evaldas Makrickas & Piotr Banaszuk & Aleksander Kołos & Andrzej Kamocki & Mateusz Grygoruk & Marta Stachowicz & Leonas Jarašius & Nerijus Zableckis & Jūratė Sendžikaitė & Jan Peters &, 2021. "Assessment and Spatial Planning for Peatland Conservation and Restoration: Europe’s Trans-Border Neman River Basin as a Case Study," Land, MDPI, vol. 10(2), pages 1-27, February.
    6. Mkondiwa, Maxwell Gibson, 2015. "Whither Broad or Spatially Specific Fertilizer Recommendations?," Master's Theses and Plan B Papers 237344, University of Minnesota, Department of Applied Economics.
    7. Tomáš Mrkvička & Ilya Molchanov, 2005. "Optimisation of linear unbiased intensity estimators for point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 71-81, March.
    8. Qin Liu & Tiange Shi, 2019. "Spatiotemporal Differentiation and the Factors of Ecological Vulnerability in the Toutun River Basin Based on Remote Sensing Data," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    9. Mohammad Ghorbani & Ottmar Cronie & Jorge Mateu & Jun Yu, 2021. "Functional marked point processes: a natural structure to unify spatio-temporal frameworks and to analyse dependent functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 529-568, September.
    10. Si-Tong Lu & Miao Zhang & Qing-Na Li, 2020. "Feasibility and a fast algorithm for Euclidean distance matrix optimization with ordinal constraints," Computational Optimization and Applications, Springer, vol. 76(2), pages 535-569, June.
    11. Giada Adelfio & Frederic Schoenberg, 2009. "Point process diagnostics based on weighted second-order statistics and their asymptotic properties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 929-948, December.
    12. Jesper Møller & Carlos Díaz‐Avalos, 2010. "Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 2-25, March.
    13. Groenen, P.J.F. & Borg, I., 2013. "The Past, Present, and Future of Multidimensional Scaling," Econometric Institute Research Papers EI 2013-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Guan, Yongtao, 2007. "A least-squares cross-validation bandwidth selection approach in pair correlation function estimations," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1722-1729, December.
    15. Li, Zhengpeng & Liu, Shuguang & Zhang, Xuesong & West, Tristram O. & Ogle, Stephen M. & Zhou, Naijun, 2016. "Evaluating land cover influences on model uncertainties—A case study of cropland carbon dynamics in the Mid-Continent Intensive Campaign region," Ecological Modelling, Elsevier, vol. 337(C), pages 176-187.
    16. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    17. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    18. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    19. Ning Zhang & Ying Mao, 2021. "Spatial Effects of Environmental Pollution on Healthcare Services: Evidence from China," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
    20. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:26:y:2021:i:4:d:10.1007_s13253-021-00455-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.