IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v21y2016i1d10.1007_s13253-015-0217-2.html
   My bibliography  Save this article

Modeling Clustered Survival Times of Loblolly Pine with Time-dependent Covariates and Shared Frailties

Author

Listed:
  • Ram Thapa

    (Virginia Tech)

  • Harold E. Burkhart

    (Virginia Tech)

  • Jie Li

    (Virginia Tech)

  • Yili Hong

    (Virginia Tech)

Abstract

Tree mortality is an important component of forest tree and stand growth models, which provide decision support for forest managers. Mortality patterns, however, are highly variable and difficult to describe. Despite numerous investigations aimed at developing tree survival models, there are still important gaps that need to be filled. This paper used a large-scale repeated measure dataset collected from permanent sample plots established in 1980/81 across the natural range of loblolly pine (Pinus taeda L.) in the Piedmont, Atlantic Coastal Plain and Gulf Coastal Plain physiographic regions of the US. The primary objective of this study was to explain the survival of loblolly pine trees using time-varying covariates such as diameter at breast height, total tree height, crown ratio, stand age, stand basal area, and dominant height. In this paper, individual-tree mortality was described using a semiparametric proportional hazards regression model. Shared frailty models were used to account for unobserved heterogeneity not explained by the observed covariates. Our investigation involved developing a modeling comparison procedure, predicting mortality based on a frailty model, and quantifying the predictive ability for tree mortality. The survival model developed using a large scale database provides further understanding of mortality trends in planted stands of loblolly pine. The survival model will enable forest managers to more accurately specify initial planting density, thinning schedules, and other management interventions.

Suggested Citation

  • Ram Thapa & Harold E. Burkhart & Jie Li & Yili Hong, 2016. "Modeling Clustered Survival Times of Loblolly Pine with Time-dependent Covariates and Shared Frailties," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 92-110, March.
  • Handle: RePEc:spr:jagbes:v:21:y:2016:i:1:d:10.1007_s13253-015-0217-2
    DOI: 10.1007/s13253-015-0217-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-015-0217-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-015-0217-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo X. & Carlin B.P., 2004. "Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages," The American Statistician, American Statistical Association, vol. 58, pages 16-24, February.
    2. Liang Li & Bo Hu & Tom Greene, 2009. "A Semiparametric Joint Model for Longitudinal and Survival Data with Application to Hemodialysis Study," Biometrics, The International Biometric Society, vol. 65(3), pages 737-745, September.
    3. Michael J. Crowther & Keith R. Abrams & Paul C. Lambert, 2013. "Joint modeling of longitudinal and survival data," Stata Journal, StataCorp LP, vol. 13(1), pages 165-184, March.
    4. Gerda Claeskens & Rosemary Nguti & Paul Janssen, 2008. "One-sided tests in shared frailty models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 69-82, May.
    5. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    6. Jie Li & Yili Hong & Ram Thapa & Harold E. Burkhart, 2015. "Survival Analysis of Loblolly Pine Trees With Spatially Correlated Random Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 486-502, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bijwaard, Govert, 2011. "Unobserved Heterogeneity in Multiple-Spell Multiple-States Duration Models," IZA Discussion Papers 5748, Institute of Labor Economics (IZA).
    2. Wienke, Andreas & Kuss, Oliver, 2009. "Random effects Weibull regression model for occupational lifetime," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1249-1250, August.
    3. Wei Yang & Dawei Xie & Qiang Pan & Harold I. Feldman & Wensheng Guo, 2017. "Joint Modeling of Repeated Measures and Competing Failure Events in a Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 504-524, December.
    4. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i11).
    5. Ramesh Gupta, 2016. "Properties of additive frailty model in survival analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 1-17, January.
    6. Virginia Zarulli, 2016. "Unobserved Heterogeneity of Frailty in the Analysis of Socioeconomic Differences in Health and Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 32(1), pages 55-72, February.
    7. Dilip C. Nath & Atanu Bhattacharjee, 2014. "Joint longitudinal and survival data modelling: an application in anti-diabetes drug therapeutic effect," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 437-452, June.
    8. Walter Dempsey & Peter McCullagh, 2018. "Survival models and health sequences," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 550-584, October.
    9. James W. Vaupel & Trifon Missov, 2014. "Unobserved population heterogeneity," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(22), pages 659-686.
    10. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.
    11. Yahia Salhi & Pierre-Emmanuel Thérond, 2016. "Age-Specific Adjustment of Graduated Mortality," Working Papers hal-01391285, HAL.
    12. Feehan, Dennis & Wrigley-Field, Elizabeth, 2020. "How do populations aggregate?," SocArXiv 2fkw3, Center for Open Science.
    13. M. K. Lintu & Asha Kamath, 2022. "Performance of recurrent event models on defect proneness data," Annals of Operations Research, Springer, vol. 315(2), pages 2209-2218, August.
    14. Il Do Ha & Maengseok Noh & Youngjo Lee, 2010. "Bias Reduction of Likelihood Estimators in Semiparametric Frailty Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 307-320, June.
    15. Andreas Wienke & Anne M. Herskind & Kaare Christensen & Axel Skytthe & Anatoli I. Yashin, 2002. "The influence of smoking and BMI on heritability in susceptibility to coronary heart disease," MPIDR Working Papers WP-2002-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    16. Filipe Costa Souza & Wilton Bernardino & Silvio C. Patricio, 2024. "How life-table right-censoring affected the Brazilian social security factor: an application of the gamma-Gompertz-Makeham model," Journal of Population Research, Springer, vol. 41(3), pages 1-38, September.
    17. Svetlana V. Ukraintseva & Anatoli I. Yashin, 2005. "Economic progress as cancer risk factor. I: Puzzling facts of cancer epidemiology," MPIDR Working Papers WP-2005-021, Max Planck Institute for Demographic Research, Rostock, Germany.
    18. Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
    19. Silke van Daalen & Hal Caswell, 2015. "Lifetime reproduction and the second demographic transition: Stochasticity and individual variation," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(20), pages 561-588.
    20. K. Motarjem & M. Mohammadzadeh & A. Abyar, 2020. "Geostatistical survival model with Gaussian random effect," Statistical Papers, Springer, vol. 61(1), pages 85-107, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:21:y:2016:i:1:d:10.1007_s13253-015-0217-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.