IDEAS home Printed from https://ideas.repec.org/a/spr/infotm/v22y2021i3d10.1007_s10799-021-00333-9.html
   My bibliography  Save this article

Framework for implementing big data analytics in Indian manufacturing: ISM-MICMAC and Fuzzy-AHP approach

Author

Listed:
  • Amit Kumar Gupta

    (Management Development Institute Gurgaon)

  • Harshit Goyal

    (TCS)

Abstract

Manufacturing firms generate a massive amount of data points because of higher than ever connected devices and sensor technology adoption. These data points could be from varied sources, ranging from flow time and cycle time through different machines in an assembly line to shop floor data collected from sensors viz. temperature, stress capability, pressure, etc. Analysis of this data can help manufacturers in many ways, viz. predict breakdown—reduction in downtime and waste, optimal inventory level—resource optimization, etc. The data may be highly voluminous, highly unstructured, coming from varied sources at a higher speed. Thus, big data analytics has become more critical than ever for the manufacturing industry to have the capability of effectively deriving business value from the vast amount of generated data. Manufacturing firms face hindrances and failures in the implementation of big data analytics. It is, therefore, necessary for the companies in the Indian manufacturing sector to identify and examine the reason and nature of barriers resisting the implementation of Big Data Analytics (BDA) to their organization. This paper explores the existing literature available to identify the barriers, categorized based on different functions of an organization. A total of 16 barriers are determined from the rigorous review of existing research. A survey is conducted on the industry experts from automobile, steel, automotive parts manufacturer, and electrical equipment industries to obtain a contextual relationship between the barriers. Interpretive Structural Modeling and MICMAC (Cross-impact matrix multiplication applied to classification) are the analytical techniques used in this research to classify the barriers into different impact levels and importance. Independent factors (barriers) have high driving power and are the key factors that were further analyzed using Fuzzy AHP to determine their comparative priority/importance. The result of this research shows that barriers related to Management and Infrastructure & Technology are the main hurdles in the implementation of big data analytics in the manufacturing industry. Six critical barriers (based on high driving power) are; lack of long-term vision, lack of commitment from top management, lack of infrastructure facility, lack of funding, lack of availability of specific data tools, and lack of training facility. Lack of commitment from top management is the most critical barrier. Research focuses on a comprehensive analysis of the barriers in implementing big data analytics (BDA) in manufacturing firms. The novelty lies in (a) finding an extensive list of barriers, (b) application domain and geography, and (c) the multi-criteria decision making technique used for finding the critical barriers to the implementation of big data analytics. The findings of this research will help industry leaders to formulate a better plan before the application of BDA in their organizations.

Suggested Citation

  • Amit Kumar Gupta & Harshit Goyal, 2021. "Framework for implementing big data analytics in Indian manufacturing: ISM-MICMAC and Fuzzy-AHP approach," Information Technology and Management, Springer, vol. 22(3), pages 207-229, September.
  • Handle: RePEc:spr:infotm:v:22:y:2021:i:3:d:10.1007_s10799-021-00333-9
    DOI: 10.1007/s10799-021-00333-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10799-021-00333-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10799-021-00333-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    2. Alharthi, Abdulkhaliq & Krotov, Vlad & Bowman, Michael, 2017. "Addressing barriers to big data," Business Horizons, Elsevier, vol. 60(3), pages 285-292.
    3. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    4. Tabesh, Pooya & Mousavidin, Elham & Hasani, Sona, 2019. "Implementing big data strategies: A managerial perspective," Business Horizons, Elsevier, vol. 62(3), pages 347-358.
    5. Devendra Kumar Dewangan & Rajat Agrawal & Vinay Sharma, 2017. "Enablers of eco-innovation to enhance the competitiveness of the Indian manufacturing sector: an integrated ISM-fuzzy MICMAC approach," International Journal of Business Innovation and Research, Inderscience Enterprises Ltd, vol. 13(4), pages 475-501.
    6. Sachin S. Kamble & Angappa Gunasekaran, 2020. "Big data-driven supply chain performance measurement system: a review and framework for implementation," International Journal of Production Research, Taylor & Francis Journals, vol. 58(1), pages 65-86, January.
    7. Lee, In, 2017. "Big data: Dimensions, evolution, impacts, and challenges," Business Horizons, Elsevier, vol. 60(3), pages 293-303.
    8. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    9. Bag, Surajit & Pretorius, Jan Ham Christiaan & Gupta, Shivam & Dwivedi, Yogesh K., 2021. "Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    10. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    11. Wang, Yichuan & Hajli, Nick, 2017. "Exploring the path to big data analytics success in healthcare," Journal of Business Research, Elsevier, vol. 70(C), pages 287-299.
    12. Yasmin, Mariam & Tatoglu, Ekrem & Kilic, Huseyin Selcuk & Zaim, Selim & Delen, Dursun, 2020. "Big data analytics capabilities and firm performance: An integrated MCDM approach," Journal of Business Research, Elsevier, vol. 114(C), pages 1-15.
    13. Arunachalam, Deepak & Kumar, Niraj & Kawalek, John Paul, 2018. "Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 416-436.
    14. Jain, Vineet & Raj, Tilak, 2016. "Modeling and analysis of FMS performance variables by ISM, SEM and GTMA approach," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 84-96.
    15. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Identification and analysis of barriers in implementation of solar energy in Indian rural sector using integrated ISM and fuzzy MICMAC approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 70-88.
    16. Olga Chkanikova & Oksana Mont, 2015. "Corporate Supply Chain Responsibility: Drivers and Barriers for Sustainable Food Retailing," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 22(2), pages 65-82, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Guoqing & Xie, Xiaotian & Wang, Yi & Liu, Shaofeng & Jones, Paul & Lopez, Carmen, 2024. "Barrier analysis to improve big data analytics capability of the maritime industry: A mixed-method approach," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    2. Jingmei Gao & Zahid Sarwar, 2024. "How do firms create business value and dynamic capabilities by leveraging big data analytics management capability?," Information Technology and Management, Springer, vol. 25(3), pages 283-304, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrucco, Andrea S. & Marzi, Giacomo & Trabucchi, Daniel, 2023. "The role of absorptive capacity and big data analytics in strategic purchasing and supply chain management decisions," Technovation, Elsevier, vol. 126(C).
    2. Zhao, Guoqing & Xie, Xiaotian & Wang, Yi & Liu, Shaofeng & Jones, Paul & Lopez, Carmen, 2024. "Barrier analysis to improve big data analytics capability of the maritime industry: A mixed-method approach," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    3. Rajesh Chidananda Reddy & Biplab Bhattacharjee & Debasisha Mishra & Anandadeep Mandal, 2022. "A systematic literature review towards a conceptual framework for enablers and barriers of an enterprise data science strategy," Information Systems and e-Business Management, Springer, vol. 20(1), pages 223-255, March.
    4. Parmar, Rashik & Leiponen, Aija & Thomas, Llewellyn D.W., 2020. "Building an organizational digital twin," Business Horizons, Elsevier, vol. 63(6), pages 725-736.
    5. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    6. S. Vijayakumar Bharathi, 2017. "Prioritizing and Ranking the Big Data Information Security Risk Spectrum," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 183-201, September.
    7. Maryia Zaitsava & Elona Marku & Maria Chiara Guardo & Azar Shahgholian, 2023. "A fine-grained perspective on big data knowledge creation: dimensions, insights, and mechanism from a pilot study," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(2), pages 547-573, June.
    8. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    9. Huynh, Minh-Tay & Nippa, Michael & Aichner, Thomas, 2023. "Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    10. Shet, Sateesh.V. & Poddar, Tanuj & Wamba Samuel, Fosso & Dwivedi, Yogesh K., 2021. "Examining the determinants of successful adoption of data analytics in human resource management – A framework for implications," Journal of Business Research, Elsevier, vol. 131(C), pages 311-326.
    11. Md Ahsan Uddin Murad & Dilek Cetindamar & Subrata Chakraborty, 2022. "Identifying the Key Big Data Analytics Capabilities in Bangladesh’s Healthcare Sector," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    12. Wilkin, Carla & Ferreira, Aldónio & Rotaru, Kristian & Gaerlan, Luigi Red, 2020. "Big data prioritization in SCM decision-making: Its role and performance implications," International Journal of Accounting Information Systems, Elsevier, vol. 38(C).
    13. Bag, Surajit & Pretorius, Jan Ham Christiaan & Gupta, Shivam & Dwivedi, Yogesh K., 2021. "Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    14. Kamble, Sachin S. & Gunasekaran, Angappa & Gawankar, Shradha A., 2020. "Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications," International Journal of Production Economics, Elsevier, vol. 219(C), pages 179-194.
    15. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    16. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    17. Anwar, Muhammad Azfar & Zong, Zupan & Mendiratta, Aparna & Yaqub, Muhammad Zafar, 2024. "Antecedents of big data analytics adoption and its impact on decision quality and environmental performance of SMEs in recycling sector," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    18. Korayim, Diana & Chotia, Varun & Jain, Girish & Hassan, Sharfa & Paolone, Francesco, 2024. "How big data analytics can create competitive advantage in high-stake decision forecasting? The mediating role of organizational innovation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    19. Tabesh, Pooya & Mousavidin, Elham & Hasani, Sona, 2019. "Implementing big data strategies: A managerial perspective," Business Horizons, Elsevier, vol. 62(3), pages 347-358.
    20. Broccardo, Laura & Vola, Paola & Zicari, Adrian & Alshibani, Safiya Mukhtar, 2023. "Contingency-based analysis of the drivers and obstacles to a successful sustainable business model: Seeking the uncaptured value," Technological Forecasting and Social Change, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infotm:v:22:y:2021:i:3:d:10.1007_s10799-021-00333-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.