Predicting movie success with machine learning techniques: ways to improve accuracy
Author
Abstract
Suggested Citation
DOI: 10.1007/s10796-016-9689-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ravid, S Abraham, 1999. "Information, Blockbusters, and Stars: A Study of the Film Industry," The Journal of Business, University of Chicago Press, vol. 72(4), pages 463-492, October.
- Jehoshua Eliashberg & Anita Elberse & Mark A.A.M. Leenders, 2006. "The Motion Picture Industry: Critical Issues in Practice, Current Research, and New Research Directions," Marketing Science, INFORMS, vol. 25(6), pages 638-661, 11-12.
- Laura Auria & Rouslan A. Moro, 2008. "Support Vector Machines (SVM) as a Technique for Solvency Analysis," Discussion Papers of DIW Berlin 811, DIW Berlin, German Institute for Economic Research.
- Jehoshua Eliashberg & Sam K. Hui & Z. John Zhang, 2007. "From Story Line to Box Office: A New Approach for Green-Lighting Movie Scripts," Management Science, INFORMS, vol. 53(6), pages 881-893, June.
- Arthur De Vany & W. Walls, 1999. "Uncertainty in the Movie Industry: Does Star Power Reduce the Terror of the Box Office?," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 23(4), pages 285-318, November.
- Tirtha Dhar & Guanghui Sun & Charles Weinberg, 2012. "The long-term box office performance of sequel movies," Marketing Letters, Springer, vol. 23(1), pages 13-29, March.
- Julianne Treme & Lee A. Craig, 2013. "Celebrity star power: Do age and gender effects influence box office performance?," Applied Economics Letters, Taylor & Francis Journals, vol. 20(5), pages 440-445, March.
- Randy Nelson & Robert Glotfelty, 2012. "Movie stars and box office revenues: an empirical analysis," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 36(2), pages 141-166, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hamed M. Zolbanin & Dursun Delen & Durand Crosby & David Wright, 0. "A Predictive Analytics-Based Decision Support System for Drug Courts," Information Systems Frontiers, Springer, vol. 0, pages 1-20.
- Ajaya Kumar Swain & Ray Qing Cao, 2019. "Using sentiment analysis to improve supply chain intelligence," Information Systems Frontiers, Springer, vol. 21(2), pages 469-484, April.
- Jong-Min Kim & Leixin Xia & Iksuk Kim & Seungjoo Lee & Keon-Hyung Lee, 2020. "Finding Nemo: Predicting Movie Performances by Machine Learning Methods," JRFM, MDPI, vol. 13(5), pages 1-12, May.
- Hamed M. Zolbanin & Dursun Delen & Durand Crosby & David Wright, 2020. "A Predictive Analytics-Based Decision Support System for Drug Courts," Information Systems Frontiers, Springer, vol. 22(6), pages 1323-1342, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kyuhan Lee & Jinsoo Park & Iljoo Kim & Youngseok Choi, 2018. "Predicting movie success with machine learning techniques: ways to improve accuracy," Information Systems Frontiers, Springer, vol. 20(3), pages 577-588, June.
- Fan, Liu & Zhang, Xiaoping & Rai, Laxmisha, 2021. "When should star power and eWOM be responsible for the box office performance? - An empirical study based on signaling theory," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
- Hofmann, Julian & Clement, Michel & Völckner, Franziska & Hennig-Thurau, Thorsten, 2017. "Empirical generalizations on the impact of stars on the economic success of movies," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 442-461.
- Jordi McKenzie, 2023. "The economics of movies (revisited): A survey of recent literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 480-525, April.
- A. Yeşim Orhun & Sriram Venkataraman & Pradeep K. Chintagunta, 2016. "Impact of Competition on Product Decisions: Movie Choices of Exhibitors," Marketing Science, INFORMS, vol. 35(1), pages 73-92, January.
- Gaenssle Sophia & Budzinski Oliver & Astakhova Daria, 2018.
"Conquering the Box Office: Factors Influencing Success of International Movies in Russia,"
Review of Network Economics, De Gruyter, vol. 17(4), pages 245-266, December.
- Gaenssle, Sophia & Budzinski, Oliver & Astakhova, Daria, 2018. "Conquering the box office: Factors influencing success of international movies in Russia," Ilmenau Economics Discussion Papers 113, Ilmenau University of Technology, Institute of Economics.
- Gänßle, Sophia & Budzinski, Oliver & Astakhova, Daria, 2019. "Conquering the box office: Factors influencing success of international movies in Russia," Ilmenau Economics Discussion Papers 131, Ilmenau University of Technology, Institute of Economics, revised 2019.
- Yanhao Max Wei, 2020. "The Similarity Network of Motion Pictures," Management Science, INFORMS, vol. 66(4), pages 1647-1671, April.
- Darren Filson & James H. Havlicek, 2018. "The performance of global film franchises: installment effects and extension decisions," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 42(3), pages 447-467, August.
- Ronny Behrens & Natasha Zhang Foutz & Michael Franklin & Jannis Funk & Fernanda Gutierrez-Navratil & Julian Hofmann & Ulrike Leibfried, 2021. "Leveraging analytics to produce compelling and profitable film content," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 45(2), pages 171-211, June.
- Fei Peng & Lili Kang & Sajid Anwar & Xue Li, 2019. "Star power and box office revenues: evidence from China," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 43(2), pages 247-278, June.
- Angela (Xia) Liu & Tridib Mazumdar & Bo Li, 2015. "Counterfactual Decomposition of Movie Star Effects with Star Selection," Management Science, INFORMS, vol. 61(7), pages 1704-1721, July.
- Pamela Adams & Roberto Fontana & Astrid Marinoni, 2018. "More “team” than “fame”: spin-off success in the US television sitcom industry," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(6), pages 957-974.
- Darlene Chisholm & Víctor Fernández-Blanco & S. Abraham Ravid & W. David Walls, 2015. "Economics of motion pictures: the state of the art," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 39(1), pages 1-13, February.
- Ana Suarez-Vazquez & Elena Montañés-Roces, 2017. "Superstars Power, Mining the Paths to Stars’ Persuasion," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 67-81, January.
- Kyle D. S. Maclean & Fredrik Ødegaard, 2023. "Revenue implications of celebrities on Broadway theatre," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(3), pages 207-218, June.
- Wei, Liyuan & Yang, Yupin, 2022. "An empirical investigation of director selection in movie preproduction: A two-sided matching approach," International Journal of Research in Marketing, Elsevier, vol. 39(3), pages 888-906.
- Jordi McKenzie, 2010. "How do theatrical box office revenues affect DVD retail sales? Australian empirical evidence," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 34(3), pages 159-179, August.
- Judith Timmer & Richard J. Boucherie & Esmé Lammers & Niek Baër & Maarten Bos & Arjan Feenstra, 2018. "Estimating the potential of collaborating professionals, with an application to the Dutch film industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 69-95, January.
- Marchand, André, 2016. "The power of an installed base to combat lifecycle decline: The case of video games," International Journal of Research in Marketing, Elsevier, vol. 33(1), pages 140-154.
- Juan Prieto-Rodriguez & Fernanda Gutierrez-Navratil & Victoria Ateca-Amestoy, 2015. "Theatre allocation as a distributor’s strategic variable over movie runs," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 39(1), pages 65-83, February.
More about this item
Keywords
Prediction model; Movie performance; Machine learning techniques; Cinema ensemble model; Transmedia storytelling; Feature selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-016-9689-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.