IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v26y2024i4d10.1007_s10796-022-10307-z.html
   My bibliography  Save this article

Trust-Augmented Deep Reinforcement Learning for Federated Learning Client Selection

Author

Listed:
  • Gaith Rjoub

    (Concordia University)

  • Omar Abdel Wahab

    (Université du Québec en Outaouais)

  • Jamal Bentahar

    (Concordia University)

  • Robin Cohen

    (University of Waterloo)

  • Ahmed Saleh Bataineh

    (Concordia University)

Abstract

In the context of distributed machine learning, the concept of federated learning (FL) has emerged as a solution to the privacy concerns that users have about sharing their own data with a third-party server. FL allows a group of users (often referred to as clients) to locally train a single machine learning model on their devices without sharing their raw data. One of the main challenges in FL is how to select the most appropriate clients to participate in the training of a certain task. In this paper, we address this challenge and propose a trust-based deep reinforcement learning approach to select the most adequate clients in terms of resource consumption and training time. On top of the client selection mechanism, we embed a transfer learning approach to handle the scarcity of data in some regions and compensate potential lack of learning at some servers. We apply our solution in the healthcare domain in a COVID-19 detection scenario over IoT devices. In the considered scenario, edge servers collaborate with IoT devices to train a COVID-19 detection model using FL without having to share any raw confidential data. Experiments conducted on a real-world COVID-19 dataset reveal that our solution achieves a good trade-off between detection accuracy and model execution time compared to existing approaches.

Suggested Citation

  • Gaith Rjoub & Omar Abdel Wahab & Jamal Bentahar & Robin Cohen & Ahmed Saleh Bataineh, 2024. "Trust-Augmented Deep Reinforcement Learning for Federated Learning Client Selection," Information Systems Frontiers, Springer, vol. 26(4), pages 1261-1278, August.
  • Handle: RePEc:spr:infosf:v:26:y:2024:i:4:d:10.1007_s10796-022-10307-z
    DOI: 10.1007/s10796-022-10307-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-022-10307-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-022-10307-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longling Zhang & Bochen Shen & Ahmed Barnawi & Shan Xi & Neeraj Kumar & Yi Wu, 2021. "FedDPGAN: Federated Differentially Private Generative Adversarial Networks Framework for the Detection of COVID-19 Pneumonia," Information Systems Frontiers, Springer, vol. 23(6), pages 1403-1415, December.
    2. Toraman, Suat & Alakus, Talha Burak & Turkoglu, Ibrahim, 2020. "Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Ayan Kumar & Kalam, Sidra & Kumar, Chiranjeev & Sinha, Ditipriya, 2021. "TLCoV- An automated Covid-19 screening model using Transfer Learning from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Rasheed, Jawad & Jamil, Akhtar & Hameed, Alaa Ali & Aftab, Usman & Aftab, Javaria & Shah, Syed Attique & Draheim, Dirk, 2020. "A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Victor Chang & Carole Goble & Muthu Ramachandran & Lazarus Jegatha Deborah & Reinhold Behringer, 2021. "Editorial on Machine Learning, AI and Big Data Methods and Findings for COVID-19," Information Systems Frontiers, Springer, vol. 23(6), pages 1363-1367, December.
    4. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:26:y:2024:i:4:d:10.1007_s10796-022-10307-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.