IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v23y2021i1d10.1007_s10796-020-09999-y.html
   My bibliography  Save this article

TextBenDS: a Generic Textual Data Benchmark for Distributed Systems

Author

Listed:
  • Ciprian-Octavian Truică

    (University Politehnica of Bucharest
    Aarhus University)

  • Elena-Simona Apostol

    (University Politehnica of Bucharest)

  • Jérôme Darmont

    (Université de Lyon)

  • Ira Assent

    (Aarhus University)

Abstract

Extracting top-k keywords and documents using weighting schemes are popular techniques employed in text mining and machine learning for different analysis and retrieval tasks. The weights are usually computed in the data preprocessing step, as they are costly to update and keep track of all the modifications performed on the dataset. Furthermore, calculation errors are introduced when analyzing only subsets of the dataset, i.e., wrong weighting are computed as weighting schemes use the number of documents for scoring keywords and documents. Therefore, in a Big Data context, it is crucial to lower the runtime of computing weighting schemes, without hindering the analysis process and the accuracy of the machine learning algorithms. To address this requirement for the task of computing top-k keywords and documents (which largely relies on weighting schemes), it is customary to design benchmarks that compare weighting schemes within various configurations of distributedframeworks and database management systems. Thus, we propose TextBenDS - a generic document-oriented benchmark for storing textual data and constructing weighting schemes. Our benchmark offers a generic data model designed with a multidimensional approach for storing text documents. We also propose using aggregation queries with various complexities and selectivities for constructing term weighting schemes, that are utilized in extracting top-k keywords and documents. We evaluate the computing performance of the queries on several distributed environments set within the Apache Hadoop ecosystem. Our experimental results provide interesting insights. As an example, MongoDB shows the best overall performance, while Spark’s execution time remains almost constant regardless of weighting schemes.

Suggested Citation

  • Ciprian-Octavian Truică & Elena-Simona Apostol & Jérôme Darmont & Ira Assent, 2021. "TextBenDS: a Generic Textual Data Benchmark for Distributed Systems," Information Systems Frontiers, Springer, vol. 23(1), pages 81-100, February.
  • Handle: RePEc:spr:infosf:v:23:y:2021:i:1:d:10.1007_s10796-020-09999-y
    DOI: 10.1007/s10796-020-09999-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-020-09999-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-020-09999-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciprian-Octavian Truică & Elena-Simona Apostol, 2023. "It’s All in the Embedding! Fake News Detection Using Document Embeddings," Mathematics, MDPI, vol. 11(3), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    2. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    3. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    4. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    5. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    6. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    7. Klaus Gugler & Florian Szücs & Ulrich Wohak, 2023. "Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft," Department of Economics Working Papers wuwp340, Vienna University of Economics and Business, Department of Economics.
    8. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    9. Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    10. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
    11. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    12. Gissler, Stefan & Oldfather, Jeremy & Ruffino, Doriana, 2016. "Lending on hold: Regulatory uncertainty and bank lending standards," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 89-101.
    13. Wittek, Peter, 2013. "Two-way incremental seriation in the temporal domain with three-dimensional visualization: Making sense of evolving high-dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 193-201.
    14. Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
    15. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    16. Hei-Chia Wang & Tzu-Ting Hsu & Yunita Sari, 2019. "Personal research idea recommendation using research trends and a hierarchical topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1385-1406, December.
    17. Borke, Lukas & Härdle, Wolfgang Karl, 2016. "Q3-D3-Lsa," SFB 649 Discussion Papers 2016-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Hiroaki Sugino & Tatsuya Sekiguchi & Yuuki Terada & Naoki Hayashi, 2023. "“Future Compass”, a Tool That Allows Us to See the Right Horizon—Integration of Topic Modeling and Multiple-Factor Analysis," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    19. David A. Broniatowski, 2018. "Building the tower without climbing it: Progress in engineering systems," Systems Engineering, John Wiley & Sons, vol. 21(3), pages 259-281, May.
    20. Marcin Chlebus & Maciej Stefan Świtała, 2020. "So close and so far. Finding similar tendencies in econometrics and machine learning papers. Topic models comparison," Working Papers 2020-16, Faculty of Economic Sciences, University of Warsaw.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:23:y:2021:i:1:d:10.1007_s10796-020-09999-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.