IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v19y2017i1d10.1007_s10796-015-9590-1.html
   My bibliography  Save this article

Integrating implicit feedbacks for time-aware web service recommendations

Author

Listed:
  • Gang Tian

    (Shandong University of Science and Technology
    Wuhan University)

  • Jian Wang

    (Wuhan University)

  • Keqing He

    (Wuhan University)

  • Chengai Sun

    (Shandong University of Science and Technology)

  • Yuan Tian

    (Shandong University of Science and Technology)

Abstract

An increasing number of Web services have been published on the Internet over the past decade due to the rapid development and adoption of the SOA (Services Oriented Architecture) standard. However, in the current state of the Web, recommending suitable Web services to users becomes a challenge due to the huge divergence in published content. Existing Web services recommendation approaches based on collaborative filtering are mainly aiming to QoS (Quality of Service) prediction. Recommending services based on users’ ratings on services are seldomly reported due to the difficulty of collecting such explicit feedback. In this paper, we report a data set of implicit feedback on real-world Web services, which consist of more than 280,000 user-service interaction records, 65,000 service users and 15,000 Web services or mashups. Temporal information is becoming an increasingly important factor in service recommendation since time effects may influence users’ preferences on services to a large extent. Based on the collected data set, we propose a time-aware service recommendation approach. Temporal information is sufficiently considered in our approach, where three time effects are analyzed and modeled including user bias shifting, Web service bias shifting, and user preference shifting. Experimental results show that the proposed approach outperforms seven existing collaborative filtering approaches on the prediction accuracy.

Suggested Citation

  • Gang Tian & Jian Wang & Keqing He & Chengai Sun & Yuan Tian, 2017. "Integrating implicit feedbacks for time-aware web service recommendations," Information Systems Frontiers, Springer, vol. 19(1), pages 75-89, February.
  • Handle: RePEc:spr:infosf:v:19:y:2017:i:1:d:10.1007_s10796-015-9590-1
    DOI: 10.1007/s10796-015-9590-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-015-9590-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-015-9590-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wuhui Chen & Incheon Paik, 2013. "Improving efficiency of service discovery using Linked data-based service publication," Information Systems Frontiers, Springer, vol. 15(4), pages 613-625, September.
    2. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. WeiLing Li & Yongbo Wang & Yuandou Wang & YunNi Xia & Xin Luo & Quanwang Wu, 2017. "An Energy-Aware and Under-SLA-Constraints VM Consolidation Strategy Based on the Optimal Matching Method," International Journal of Web Services Research (IJWSR), IGI Global, vol. 14(4), pages 75-89, October.
    2. Jing Geng & Shuliang Wang & Wenxia Gan & Hanning Yuan & Zeqiang Chen & Ziqiang Yuan & Tianru Dai, 2019. "Promoting Geospatial Service from Information to Knowledge with Spatiotemporal Semantics," Complexity, Hindawi, vol. 2019, pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenge Rong & Baolin Peng & Yuanxin Ouyang & Kecheng Liu & Zhang Xiong, 2015. "Collaborative personal profiling for web service ranking and recommendation," Information Systems Frontiers, Springer, vol. 17(6), pages 1265-1282, December.
    2. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    3. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    4. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    5. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    6. Joanna Sokolowska & Patrycja Sleboda, 2015. "The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1252-1267, July.
    7. Donald R. Haurin & Stuart S. Rosenthal, 2009. "Language, Agglomeration and Hispanic Homeownership," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 155-183, June.
    8. Jong Won Min, 2019. "The Influence of Stigma and Views on Mental Health Treatment Effectiveness on Service Use by Age and Ethnicity: Evidence From the CDC BRFSS 2007, 2009, and 2012," SAGE Open, , vol. 9(3), pages 21582440198, September.
    9. Zhan (Michael) Shi & T. S. Raghu, 2020. "An Economic Analysis of Product Recommendation in the Presence of Quality and Taste-Match Heterogeneity," Information Systems Research, INFORMS, vol. 31(2), pages 399-411, June.
    10. Voxi Amavilah & Antonio R. Andrés, 2014. "Globalization, Peace & Stability, Governance, and Knowledge Economy," Research Africa Network Working Papers 14/012, Research Africa Network (RAN).
    11. Alwang, Jeffrey & Larochelle, Catherine & Barrera, Victor, 2017. "Farm Decision Making and Gender: Results from a Randomized Experiment in Ecuador," World Development, Elsevier, vol. 92(C), pages 117-129.
    12. Yanina Welp & Ferran Urgell & Eduard Aibar, 2007. "From Bureaucratic Administration to Network Administration? An Empirical Study on E-Government Focus on Catalonia," Public Organization Review, Springer, vol. 7(4), pages 299-316, December.
    13. Brent Hammer & Helen Vallianatos & Candace Nykiforuk & Laura Nieuwendyk, 2015. "Perceptions of healthy eating in four Alberta communities: a photovoice project," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(4), pages 649-662, December.
    14. Amine Dadoun & Michael Defoin-Platel & Thomas Fiig & Corinne Landra & Raphaël Troncy, 2021. "How recommender systems can transform airline offer construction and retailing," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(3), pages 301-315, June.
    15. Parag, Yael & Darby, Sarah, 2009. "Consumer-supplier-government triangular relations: Rethinking the UK policy path for carbon emissions reduction from the UK residential sector," Energy Policy, Elsevier, vol. 37(10), pages 3984-3992, October.
    16. Umberto Panniello & Michele Gorgoglione & Alexander Tuzhilin, 2016. "Research Note—In CARSs We Trust: How Context-Aware Recommendations Affect Customers’ Trust and Other Business Performance Measures of Recommender Systems," Information Systems Research, INFORMS, vol. 27(1), pages 182-196, March.
    17. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    18. Kim, Jae Kyeong & Kim, Hyea Kyeong & Oh, Hee Young & Ryu, Young U., 2010. "A group recommendation system for online communities," International Journal of Information Management, Elsevier, vol. 30(3), pages 212-219.
    19. Quentin Plantec & Benjamin Cabanes & Pascal Le Masson & Benoit Weil, 2021. "Market-Pull Or Research Push? Effects Of Research Orientations On University-Industry Collaborative Ph.D. Projects' Performances," Post-Print halshs-03190142, HAL.
    20. Gupta, Mukul & Kumar, Pradeep, 2020. "Recommendation generation using personalized weight of meta-paths in heterogeneous information networks," European Journal of Operational Research, Elsevier, vol. 284(2), pages 660-674.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:19:y:2017:i:1:d:10.1007_s10796-015-9590-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.