Properties of k-Fibonacci and k-Lucas octonions
Author
Abstract
Suggested Citation
DOI: 10.1007/s13226-019-0368-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
- Falcón, Sergio & Plaza, Ángel, 2009. "On k-Fibonacci sequences and polynomials and their derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1005-1019.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Engin Özkan & Mine Uysal & A. D. Godase, 2022. "Hyperbolic $$\pmb k$$ k -Jacobsthal and $$\pmb k$$ k -Jacobsthal-Lucas Quaternions," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 956-967, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fiorenza, Alberto & Vincenzi, Giovanni, 2011. "Limit of ratio of consecutive terms for general order-k linear homogeneous recurrences with constant coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 145-152.
- Nalli, Ayse & Haukkanen, Pentti, 2009. "On generalized Fibonacci and Lucas polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3179-3186.
- W. M. Abd-Elhameed & N. A. Zeyada, 2022. "New formulas including convolution, connection and radicals formulas of k-Fibonacci and k-Lucas polynomials," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1006-1016, December.
- Flaut, Cristina & Shpakivskyi, Vitalii & Vlad, Elena, 2017. "Some remarks regarding h(x) – Fibonacci polynomials in an arbitrary algebra," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 32-35.
- Chung-Chuan Chen & Lin-Ling Huang, 2021. "Some New Identities for the Generalized Fibonacci Polynomials by the Q(x) Matrix," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(2), pages 1-21, April.
- Natalia Bednarz, 2021. "On ( k , p )-Fibonacci Numbers," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
- Yasemin Taşyurdu, 2019. "Generalized (p,q)-Fibonacci-Like Sequences and Their Properties," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(6), pages 1-43, December.
- Falcón, Sergio & Plaza, Ángel, 2009. "The metallic ratios as limits of complex valued transformations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 1-13.
- Falcón, Sergio & Plaza, Ángel, 2009. "On k-Fibonacci sequences and polynomials and their derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1005-1019.
- Ye, Xiaoli & Zhang, Zhizheng, 2017. "A common generalization of convolved generalized Fibonacci and Lucas polynomials and its applications," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 31-37.
- Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
- Younseok Choo, 2020. "Relations between Generalized Bi-Periodic Fibonacci and Lucas Sequences," Mathematics, MDPI, vol. 8(9), pages 1-10, September.
- Pavel Trojovský & Štěpán Hubálovský, 2020. "Some Diophantine Problems Related to k -Fibonacci Numbers," Mathematics, MDPI, vol. 8(7), pages 1-10, June.
- Flaut, Cristina & Savin, Diana, 2018. "Some special number sequences obtained from a difference equation of degree three," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 67-71.
- Kilic, E. & Stakhov, A.P., 2009. "On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2210-2221.
- Younseok Choo, 2021. "On the Reciprocal Sums of Products of Two Generalized Bi-Periodic Fibonacci Numbers," Mathematics, MDPI, vol. 9(2), pages 1-11, January.
- Falcon, Sergio & Plaza, Ángel, 2009. "k-Fibonacci sequences modulo m," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 497-504.
- Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
- Louzzani, Noura & Boukabou, Abdelkrim & Bahi, Halima & Boussayoud, Ali, 2021. "A novel chaos based generating function of the Chebyshev polynomials and its applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Catarino, Paula, 2015. "A note on h(x) − Fibonacci quaternion polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 1-5.
More about this item
Keywords
Fibonacci sequence; k-Fibonacci sequence; k-Lucas sequence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:50:y:2019:i:4:d:10.1007_s13226-019-0368-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.