IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v47y2016i2d10.1007_s13226-016-0182-7.html
   My bibliography  Save this article

Convergence of estimated option price in a regime switching market

Author

Listed:
  • Anindya Goswami

    (IISER)

  • Sanket Nandan

    (IISER)

Abstract

In an observed semi-Markov regime, estimation of transition rate of regime switching leads towards calculation of locally risk minimizing option price. Despite the uniform convergence of estimated step function of transition rate, to meet the existence of classical solution of the modified price equation, the estimator is approximated in the class of smooth functions and furthermore, the convergence is established. Later, the existence of the solution of the modified price equation is verified and the point-wise convergence of such approximation of option price is proved to answer the tractability of its application in Finance. To demonstrate the consistency in result a numerical experiment has been reported.

Suggested Citation

  • Anindya Goswami & Sanket Nandan, 2016. "Convergence of estimated option price in a regime switching market," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(2), pages 169-182, June.
  • Handle: RePEc:spr:indpam:v:47:y:2016:i:2:d:10.1007_s13226-016-0182-7
    DOI: 10.1007/s13226-016-0182-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-016-0182-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-016-0182-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brahim Ouhbi & Nikolaos Limnios, 1999. "Nonparametric Estimation for Semi-Markov Processes Based on its Hazard Rate Functions," Statistical Inference for Stochastic Processes, Springer, vol. 2(2), pages 151-173, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milan Kumar Das & Anindya Goswami & Sharan Rajani, 2023. "Inference of Binary Regime Models with Jump Discontinuities," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 49-86, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo D’Amico & Giuseppe Di Biase & Raimondo Manca, 2011. "Immigration Effects On Economic Systems Through Dynamic Inequality Indices," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 5(5), pages 11-25.
    2. Irene Votsi & Nikolaos Limnios & George Tsaklidis & Eleftheria Papadimitriou, 2012. "Estimation of the Expected Number of Earthquake Occurrences Based on Semi-Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 685-703, September.
    3. Limnios, N., 2006. "Estimation of the stationary distribution of semi-Markov processes with Borel state space," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1536-1542, August.
    4. Andre Monteiro & Georgi V. Smirnov & Andre Lucas, 2006. "Nonparametric Estimation for Non-Homogeneous Semi-Markov Processes: An Application to Credit Risk," Tinbergen Institute Discussion Papers 06-024/2, Tinbergen Institute, revised 27 Mar 2006.
    5. Jiang, Tao & Liu, Yu, 2017. "Parameter inference for non-repairable multi-state system reliability models by multi-level observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 3-15.
    6. Biase di Giuseppe & Guglielmo D'Amico & Jacques Janssen & Raimondo Manca, 2014. "A Duration Dependent Rating Migration Model: Real Data Application and Cost of Capital Estimation," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(3), pages 233-245, June.
    7. K. Khorshidian & F. Negahdari & H. A. Mardnifard, 2016. "Estimation for Discrete-time Semi-Markov Reward Processes: Analysis and Inference," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 885-900, September.
    8. Enrique E. Alvarez, 2005. "Estimation in Stationary Markov Renewal Processes, with Application to Earthquake Forecasting in Turkey," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 119-130, March.
    9. D’Amico, Guglielmo & Petroni, Filippo, 2023. "ROCOF of higher order for semi-Markov processes," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    10. Gámiz, M.L. & Román, Y., 2008. "Non-parametric estimation of the availability in a general repairable system," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1188-1196.
    11. Król, Agnieszka & Saint-Pierre, Philippe, 2015. "SemiMarkov: An R Package for Parametric Estimation in Multi-State Semi-Markov Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i06).
    12. Vlad Stefan Barbu & Nicolas Vergne, 2019. "Reliability and Survival Analysis for Drifting Markov Models: Modeling and Estimation," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1407-1429, December.
    13. Manuel L. Esquível & Nadezhda P. Krasii & Gracinda R. Guerreiro, 2021. "Open Markov Type Population Models: From Discrete to Continuous Time," Mathematics, MDPI, vol. 9(13), pages 1-29, June.
    14. Vlad Stefan Barbu & Alex Karagrigoriou & Andreas Makrides, 2017. "Semi-Markov Modelling for Multi-State Systems," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1011-1028, December.
    15. Dabrowska Dorota M., 2012. "Estimation in a Semi-Markov Transformation Model," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-62, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:47:y:2016:i:2:d:10.1007_s13226-016-0182-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.