IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20060024.html
   My bibliography  Save this paper

Nonparametric Estimation for Non-Homogeneous Semi-Markov Processes: An Application to Credit Risk

Author

Listed:
  • Andre Monteiro

    (Vrije Universiteit Amsterdam)

  • Georgi V. Smirnov

    (University of Porto)

  • Andre Lucas

    (Vrije Universiteit Amsterdam)

Abstract

We propose procedures for estimating the time-dependent transition matrices for the general class of finite nonhomogeneous continuous-time semi-Markov processes. We prove the existence and uniqueness of solutions for the system of Volterra integral equations defining the transition matrices, therefore showing that these empirical transition probabilities can be estimated from window censored event-history data. An implementation of the method is presented based on nonparametric estimators of the hazard rate functions in the general and separable cases. A Monte Carlo study is performed to assess the small sample behavior of the resulting estimators. We use these new estimators for dealing with a central issue in credit risk. We consider the problem of obtaining estimates of the historical corporate default and rating migration probabilities using a dataset on credit ratings from Standard & Poor's.

Suggested Citation

  • Andre Monteiro & Georgi V. Smirnov & Andre Lucas, 2006. "Nonparametric Estimation for Non-Homogeneous Semi-Markov Processes: An Application to Credit Risk," Tinbergen Institute Discussion Papers 06-024/2, Tinbergen Institute, revised 27 Mar 2006.
  • Handle: RePEc:tin:wpaper:20060024
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/06024.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janssen, J. & de Dominicis, R., 1984. "Finite non-homogeneous semi-Markov processes: Theoretical and computational aspects," Insurance: Mathematics and Economics, Elsevier, vol. 3(3), pages 157-165, July.
    2. Brahim Ouhbi & Nikolaos Limnios, 1999. "Nonparametric Estimation for Semi-Markov Processes Based on its Hazard Rate Functions," Statistical Inference for Stochastic Processes, Springer, vol. 2(2), pages 151-173, May.
    3. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    4. Jafry, Yusuf & Schuermann, Til, 2004. "Measurement, estimation and comparison of credit migration matrices," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2603-2639, November.
    5. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    2. Sabine Zinn, 2014. "The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation," International Journal of Microsimulation, International Microsimulation Association, vol. 7(3), pages 3-32.
    3. Qi Cao & Erik Buskens & Talitha Feenstra & Tiny Jaarsma & Hans Hillege & Douwe Postmus, 2016. "Continuous-Time Semi-Markov Models in Health Economic Decision Making," Medical Decision Making, , vol. 36(1), pages 59-71, January.
    4. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey R. Stokes, 2023. "A nonlinear inversion procedure for modeling the effects of economic factors on credit risk migration," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 855-878, October.
    2. Areski Cousin & Mohamed Reda Kheliouen, 2016. "A comparative study on the estimation of factor migration models," Working Papers halshs-01351926, HAL.
    3. Fuertes, Ana-Maria & Kalotychou, Elena, 2007. "On sovereign credit migration: A study of alternative estimators and rating dynamics," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3448-3469, April.
    4. Biase di Giuseppe & Guglielmo D'Amico & Jacques Janssen & Raimondo Manca, 2014. "A Duration Dependent Rating Migration Model: Real Data Application and Cost of Capital Estimation," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(3), pages 233-245, June.
    5. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle," IJFS, MDPI, vol. 2(1), pages 1-22, March.
    6. Schechtman, Ricardo, 2013. "Default matrices: A complete measurement of banks’ consumer credit delinquency," Journal of Financial Stability, Elsevier, vol. 9(4), pages 460-474.
    7. P. Lencastre & F. Raischel & P. G. Lind, 2014. "The effect of the number of states on the validity of credit ratings," Papers 1409.2661, arXiv.org.
    8. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    9. Correa, Arnildo & Marins, Jaqueline & Neves, Myrian & da Silva, Antonio Carlos, 2014. "Credit Default and Business Cycles: An Empirical Investigation of Brazilian Retail Loans," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(3), September.
    10. Figlewski, Stephen & Frydman, Halina & Liang, Weijian, 2012. "Modeling the effect of macroeconomic factors on corporate default and credit rating transitions," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 87-105.
    11. Georges Dionne & Geneviève Gauthier & Khemais Hammami & Mathieu Maurice & Jean‐Guy Simonato, 2010. "Default Risk in Corporate Yield Spreads," Financial Management, Financial Management Association International, vol. 39(2), pages 707-731, June.
    12. Kiefer, Nicholas M. & Larson, C. Erik, 2007. "A simulation estimator for testing the time homogeneity of credit rating transitions," Journal of Empirical Finance, Elsevier, vol. 14(5), pages 818-835, December.
    13. Anisa Caja & Frédéric Planchet, 2014. "Modeling Cycle Dependence in Credit Insurance," Risks, MDPI, vol. 2(1), pages 1-15, March.
    14. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    15. André A. Monteiro, 2008. "Parameter Driven Multi-state Duration Models: Simulated vs. Approximate Maximum Likelihood Estimation," Tinbergen Institute Discussion Papers 08-021/2, Tinbergen Institute.
    16. Areski Cousin & Jérôme Lelong & Tom Picard, 2023. "Rating transitions forecasting: a filtering approach," Post-Print hal-03347521, HAL.
    17. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Migration Analysis; Conditioning Transition Matrices on the Stage of the Business Cycle," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 20(2), pages 151-166, May.
    18. Xing, Haipeng & Sun, Ning & Chen, Ying, 2012. "Credit rating dynamics in the presence of unknown structural breaks," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 78-89.
    19. Djeundje, Viani Biatat & Crook, Jonathan, 2018. "Incorporating heterogeneity and macroeconomic variables into multi-state delinquency models for credit cards," European Journal of Operational Research, Elsevier, vol. 271(2), pages 697-709.
    20. Smith, Brent C, 2011. "Stability in consumer credit scores: Level and direction of FICO score drift as a precursor to mortgage default and prepayment," Journal of Housing Economics, Elsevier, vol. 20(4), pages 285-298.

    More about this item

    Keywords

    Nonhomogeneous semi-Markov processes; transition matrix; Volterra integral equations; separability; credit risk;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20060024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.