IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v41y2010i1d10.1007_s13226-010-0003-3.html
   My bibliography  Save this article

Nonparametric estimation of multivariate density with direct and auxiliary data and application

Author

Listed:
  • Subhadip Bandyopadhyay

    (CKDIS)

  • Arup Bose

    (Indian Statistical Institute)

  • Debasis Sengupta

    (Indian Statistical Institute)

Abstract

We consider the problem of multivariate density estimation, using samples from the distribution of interest as well as auxiliary samples from a related distribution. We assume that the data from the target distribution and the related distribution may occur individually as well as in pairs. Using nonparametric maximum likelihood estimator of the joint distribution, we derive a kernel density estimator of the marginal density. We show theoretically, in a simple special case, that the implied estimator of the marginal density has smaller integrated mean squared error than that of a similar estimator obtained by ignoring dependence of the paired observations. We establish consistency of the marginal density estimator under suitable conditions. We demonstrate small sample superiority of the proposed estimator over the estimator that ignores dependence of the samples, through a simulation study with dependent and non-normal populations. The application of the density estimator in nonparametric classification is also discussed. It is shown that the misclassification probability of the resulting classifier is asymptotically equivalent to that of the Bayes classifier. We also include a data analytic illustration.

Suggested Citation

  • Subhadip Bandyopadhyay & Arup Bose & Debasis Sengupta, 2010. "Nonparametric estimation of multivariate density with direct and auxiliary data and application," Indian Journal of Pure and Applied Mathematics, Springer, vol. 41(1), pages 251-274, February.
  • Handle: RePEc:spr:indpam:v:41:y:2010:i:1:d:10.1007_s13226-010-0003-3
    DOI: 10.1007/s13226-010-0003-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-010-0003-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-010-0003-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazelton, Martin L., 2000. "Marginal density estimation from incomplete bivariate data," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 75-84, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojirsheibani, Majid & Montazeri, Zahra, 2007. "On nonparametric classification with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1051-1071, May.
    2. Majid Mojirsheibani & Zahra Montazeri, 2007. "Statistical classification with missing covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 839-857, November.
    3. Mohsen Arefi & Reinhard Viertl & S. Taheri, 2012. "Fuzzy density estimation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 5-22, January.
    4. Levon Demirdjian & Majid Mojirsheibani, 2019. "Kernel classification with missing data and the choice of smoothing parameters," Statistical Papers, Springer, vol. 60(5), pages 1487-1513, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:41:y:2010:i:1:d:10.1007_s13226-010-0003-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.