IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v47y2000i1p75-84.html
   My bibliography  Save this article

Marginal density estimation from incomplete bivariate data

Author

Listed:
  • Hazelton, Martin L.

Abstract

The problem of estimating a marginal density from incomplete bivariate data is considered. A kernel estimator is proposed. Strong consistency of the estimator is proved, and asymptotic formulae for its mean and variance derived. A method of bandwidth selection is suggested. Application of the estimator is then illustrated on example data sets. Possible extensions and improvements are discussed.

Suggested Citation

  • Hazelton, Martin L., 2000. "Marginal density estimation from incomplete bivariate data," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 75-84, March.
  • Handle: RePEc:eee:stapro:v:47:y:2000:i:1:p:75-84
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00140-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levon Demirdjian & Majid Mojirsheibani, 2019. "Kernel classification with missing data and the choice of smoothing parameters," Statistical Papers, Springer, vol. 60(5), pages 1487-1513, October.
    2. Subhadip Bandyopadhyay & Arup Bose & Debasis Sengupta, 2010. "Nonparametric estimation of multivariate density with direct and auxiliary data and application," Indian Journal of Pure and Applied Mathematics, Springer, vol. 41(1), pages 251-274, February.
    3. Mojirsheibani, Majid & Montazeri, Zahra, 2007. "On nonparametric classification with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1051-1071, May.
    4. Mohsen Arefi & Reinhard Viertl & S. Taheri, 2012. "Fuzzy density estimation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 5-22, January.
    5. Majid Mojirsheibani & Zahra Montazeri, 2007. "Statistical classification with missing covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 839-857, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:47:y:2000:i:1:p:75-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.