IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v7y2016i3d10.1007_s13198-016-0456-9.html
   My bibliography  Save this article

Intuitionistic fuzzy transportation problem with various kinds of uncertainties in parameters and variables

Author

Listed:
  • Sujeet Kumar Singh

    (Indian Institute of Technology Roorkee)

  • Shiv Prasad Yadav

    (Indian Institute of Technology Roorkee)

Abstract

In real-life decisions usually we have to suffer through different states of uncertainties. In this article, we formulate a transportation problem in which costs, supplies and demands all are different types of real, fuzzy or intuitionistic fuzzy numbers that is the data has different types of uncertainties. We propose a ranking procedure for intuitionistic fuzzy numbers. Using the proposed ranking function intuitionistic fuzzy methods are proposed to find starting basic feasible solution in terms of trapezoidal intuitionistic fuzzy numbers. Intuitionistic fuzzy modified distribution method is proposed to find optimal solution. We illustrate the methodology by numerical examples.

Suggested Citation

  • Sujeet Kumar Singh & Shiv Prasad Yadav, 2016. "Intuitionistic fuzzy transportation problem with various kinds of uncertainties in parameters and variables," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(3), pages 262-272, September.
  • Handle: RePEc:spr:ijsaem:v:7:y:2016:i:3:d:10.1007_s13198-016-0456-9
    DOI: 10.1007/s13198-016-0456-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0456-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0456-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Mohit Kumar & Shiv Prasad Yadav & Surendra Kumar, 2011. "A new approach for analysing the fuzzy system reliability using intuitionistic fuzzy number," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 8(2), pages 135-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Senthil Kumar, 2020. "Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 189-222, February.
    2. Ali Ebrahimnejad & Jose Luis Verdegay, 2018. "A new approach for solving fully intuitionistic fuzzy transportation problems," Fuzzy Optimization and Decision Making, Springer, vol. 17(4), pages 447-474, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    2. Carla Oliveira Henriques & Dulce Helena Coelho & Maria Elisabete Duarte Neves, 2022. "Investment planning in energy efficiency programs: a portfolio based approach," Operational Research, Springer, vol. 22(1), pages 615-649, March.
    3. Gourav Gupta & Shivani & Deepika Rani, 2024. "Neutrosophic goal programming approach for multi-objective fixed-charge transportation problem with neutrosophic parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1274-1300, September.
    4. Shubham Gupta & Raghav Khanna & Pranay Kohli & Sarthak Agnihotri & Umang Soni & M. Asjad, 2023. "Risk evaluation of electric vehicle charging infrastructure using Fuzzy AHP – a case study in India," Operations Management Research, Springer, vol. 16(1), pages 245-258, March.
    5. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    6. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    7. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    8. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    9. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    10. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    11. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    12. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    13. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    14. Baiyee-Mbi, Agbor-Baiyee & Mazzocco, Michael A., 2005. "Comparative Evaluation of the Performance of Spans of Control Designs in Grain Supply Chains," 2005 Annual meeting, July 24-27, Providence, RI 19313, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Camelia Delcea & Ionuț Nica & Irina Georgescu & Nora Chiriță & Cristian Ciurea, 2024. "Integrating Fuzzy MCDM Methods and ARDL Approach for Circular Economy Strategy Analysis in Romania," Mathematics, MDPI, vol. 12(19), pages 1-35, September.
    16. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    17. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    18. Tang, Christopher S. & Davarzani, Hoda & Sarkis, Joseph, 2015. "Quantitative models for managing supply chain risks: A reviewAuthor-Name: Fahimnia, Behnam," European Journal of Operational Research, Elsevier, vol. 247(1), pages 1-15.
    19. Dinulescu Ruxandra & Dobrin Cosmin, 2022. "Applying the fuzzy analytical hierarchy process for classifying and prioritizing healthcare quality attributes," Management & Marketing, Sciendo, vol. 17(1), pages 15-40, March.
    20. Foulds, Les R. & do Nascimento, Hugo A.D. & Calixto, Iacer C.A.C. & Hall, Bryon R. & Longo, Humberto, 2013. "A fuzzy set-based approach to origin–destination matrix estimation in urban traffic networks with imprecise data," European Journal of Operational Research, Elsevier, vol. 231(1), pages 190-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:7:y:2016:i:3:d:10.1007_s13198-016-0456-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.